Hostname: page-component-5f745c7db-6bmsf Total loading time: 0 Render date: 2025-01-06T08:42:29.777Z Has data issue: true hasContentIssue false

On the mechanics of droplet surface crater during impact on immiscible viscous liquid pool

Published online by Cambridge University Press:  17 January 2023

Durbar Roy
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
Sophia M
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
Saptarshi Basu*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Science, Bengaluru 560012, India
*
Email address for correspondence: [email protected]

Abstract

We study drop impacts on an immiscible viscous liquid pool and investigate the formation of droplet surface craters using experimental and theoretical analyses. We attribute the formation of air craters to the rapid deceleration of the droplet due to viscous drag force. The droplet response to the external impulsive decelerating force induces oscillatory modes on the surface exposed to the air forming capillary waves that superimpose to form air craters of various shapes and sizes. We introduce a non-dimensional parameter (${\varGamma }$), that is, the ratio of the drag force to the capillary force acting on the droplet. We show that ${\varGamma }$ is directly proportional to the capillary number. We show that droplets forming air craters of significant depths have ${\varGamma }>1$. Further, we demonstrate that Legendre polynomials can locally approximate the central air crater jet profile. We also decipher that the air crater response time scale ($T$) varies as the square root of impact Weber number ($T\sim We^{1/2}$). Further, we generalize the local droplet response with a global response model for low impact energies based on an eigenvalue problem. We represent the penetrating drop as a constrained Rayleigh drop problem with a dynamic contact line. The air–water interface dynamics is analysed using an inviscid droplet deformation model for small deformation amplitudes. The local and global droplet response theories conform with each other and depict that the deformation profiles could be represented as a linear superposition of eigenmodes in Legendre polynomial basis. We unearth that the droplet response in an immiscible impact system differs from the miscible impact systems due to the presence of such a dynamic contact line.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R.J. 1991 Particle-imaging techniques for experimental fluid mechanics. Annu. Rev. Fluid Mech. 23 (1), 261304.CrossRefGoogle Scholar
Aksoy, Y.T., Zhu, Y., Eneren, P., Koos, E. & Vetrano, M.R. 2020 The impact of nanofluids on droplet/spray cooling of a heated surface: a critical review. Energies 14 (1), 80.CrossRefGoogle Scholar
Aziz, S.D. & Chandra, S. 2000 Impact, recoil and splashing of molten metal droplets. Intl J. Heat Mass Transfer 43 (16), 28412857.CrossRefGoogle Scholar
Barenblatt, G.I. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics. Cambridge University Press.CrossRefGoogle Scholar
Bartolo, D., Josserand, C. & Bonn, D. 2006 Singular jets and bubbles in drop impact. Phys. Rev. Lett. 96 (12), 124501.CrossRefGoogle ScholarPubMed
Benjamin, T.B. & Scott, J.C. 1981 Trends in Applications of Pure Mathematics to Mechanics, vol. III.Google Scholar
Bolleddula, D.A., Berchielli, A. & Aliseda, A. 2010 Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry. Adv. Colloid Interface Sci. 159 (2), 144159.CrossRefGoogle ScholarPubMed
Bostwick, J.B. & Steen, P.H. 2009 Capillary oscillations of a constrained liquid drop. Phys. Fluids 21 (3), 032108.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2013 a Coupled oscillations of deformable spherical-cap droplets. Part 1. Inviscid motions. J. Fluid Mech. 714, 312335.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2013 b Coupled oscillations of deformable spherical-cap droplets. Part 2. Viscous motions. J. Fluid Mech. 714, 336360.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2014 Dynamics of sessile drops. Part 1. Inviscid theory. J. Fluid Mech. 760, 538.CrossRefGoogle Scholar
Bostwick, J.B. & Steen, P.H. 2015 Stability of constrained capillary surfaces. Annu. Rev. Fluid Mech. 47 (1), 539568.CrossRefGoogle Scholar
Bradski, G. 2000 The OpenCV Library. Dr. Dobb's Journal of Software Tools.Google Scholar
Bradski, G. & Kaehler, A. 2008 Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media, Inc.Google Scholar
Castillo-Orozco, E., Davanlou, A., Choudhury, P.K. & Kumar, R. 2015 Droplet impact on deep liquid pools: Rayleigh jet to formation of secondary droplets. Phys. Rev. E 92 (5), 053022.CrossRefGoogle ScholarPubMed
Castrejón-Pita, J.R., Muñoz-Sánchez, B.N., Hutchings, I.M. & Castrejón-Pita, A.A. 2016 Droplet impact onto moving liquids. J. Fluid Mech. 809, 716725.CrossRefGoogle Scholar
Che, Z. & Matar, O.K. 2018 Impact of droplets on immiscible liquid films. Soft Matt. 14 (9), 15401551.CrossRefGoogle ScholarPubMed
Chityala, R. & Pudipeddi, S. 2020 Image Processing and Acquisition Using Python. Chapman and Hall/CRC.CrossRefGoogle Scholar
Dhuper, K., Guleria, S.D. & Kumar, P. 2021 Interface dynamics at the impact of a drop onto a deep pool of immiscible liquid. Chem. Engng Sci. 237, 116541.CrossRefGoogle Scholar
Gekle, S. & Gordillo, J.M. 2010 Generation and breakup of worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.CrossRefGoogle Scholar
Gordillo, J.M. & Gekle, S. 2010 Generation and breakup of worthington jets after cavity collapse. Part 2. Tip breakup of stretched jets. J. Fluid Mech. 663, 331346.CrossRefGoogle Scholar
Harper, E.Y., Grube, G.W. & Chang, I.-D. 1972 On the breakup of accelerating liquid drops. J. Fluid Mech. 52 (3), 565591.CrossRefGoogle Scholar
Hasegawa, K. & Nara, T. 2019 Energy conservation during single droplet impact on deep liquid pool and jet formation. AIP Adv. 9 (8), 085218.CrossRefGoogle Scholar
Hicks, P.D. & Purvis, R. 2010 Air cushioning and bubble entrapment in three-dimensional droplet impacts. J. Fluid Mech. 649, 135163.CrossRefGoogle Scholar
Hicks, P.D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23 (6), 062104.CrossRefGoogle Scholar
Kern, V.R., Bostwick, J.B. & Steen, P.H. 2021 Drop impact on solids: contact-angle hysteresis filters impact energy into modal vibrations. J. Fluid Mech. 923, A5.CrossRefGoogle Scholar
Kundu, P.K., Cohen, I.M. & Dowling, D.R. 2015 Fluid Mechanics. Academic.Google Scholar
Lauterborn, W. & Vogel, A. 1984 Modern optical techniques in fluid mechanics. Annu. Rev. Fluid Mech. 16 (1), 223244.CrossRefGoogle Scholar
MacRobert, T.M. 1967 Spherical Harmonics: An Elementary Treatise on Harmonic Functions, with Applications, vol. 98. Dover.Google Scholar
Marcotte, F., Michon, G.-J., Séon, T. & Josserand, C. 2019 Ejecta, corolla, and splashes from drop impacts on viscous fluids. Phys. Rev. Lett. 122 (1), 014501.CrossRefGoogle ScholarPubMed
Minami, F. & Hasegawa, K. 2022 Cavity and jet formation after immiscible droplet impact into deep water pool. Phys. Fluids 34 (3), 033315.CrossRefGoogle Scholar
Moghisi, M. & Squire, P.T. 1981 An experimental investigation of the initial force of impact on a sphere striking a liquid surface. J. Fluid Mech. 108, 133146.CrossRefGoogle Scholar
Pasandideh-Fard, M., Chandra, S. & Mostaghimi, J. 2002 A three-dimensional model of droplet impact and solidification. Intl J. Heat Mass Transfer 45 (11), 22292242.CrossRefGoogle Scholar
Renardy, Y., Popinet, S., Duchemin, L., Renardy, M., Zaleski, S., Josserand, C., Drumright-Clarke, M.A., Richard, D., Clanet, C. & Quéré, D. 2003 Pyramidal and toroidal water drops after impact on a solid surface. J. Fluid Mech. 484, 6983.CrossRefGoogle Scholar
Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11 (2), doi:10.1615/AtomizSpr.v11.i2.40.Google Scholar
Roisman, I.V. & Tropea, C. 2002 Impact of a drop onto a wetted wall: description of crown formation and propagation. J. Fluid Mech. 472, 373397.CrossRefGoogle Scholar
Roy, D., Sophia, M., Rao, S.S. & Basu, S. 2022 Droplet impact on immiscible liquid pool: multi-scale dynamics of entrapped air cushion at short timescales. Phys. Fluids 34 (5), 052004.CrossRefGoogle Scholar
Roy, D., Pandey, K., Banik, M., Mukherjee, R. & Basu, S. 2019 Dynamics of droplet impingement on bioinspired surface: insights into spreading, anomalous stickiness and break-up. Proc. R. Soc. Lond. A 475 (2229), 20190260.Google ScholarPubMed
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. 2012 NIH image to imagej: 25 years of image analysis. Nat. Meth. 9 (7), 671675.CrossRefGoogle ScholarPubMed
Shetabivash, H., Ommi, F. & Heidarinejad, G. 2014 Numerical analysis of droplet impact onto liquid film. Phys. Fluids 26 (1), 012102.CrossRefGoogle Scholar
Sikalo, S., Marengo, M., Tropea, C. & Ganic, E.N. 2000 Analysis of impact of droplets on horizontal surfaces. In Thermal Sciences 2000. Proceedings of the International Thermal Science Seminar, vol. 1. Begel House Inc.CrossRefGoogle Scholar
Simpkins, P.G. & Bales, E.L. 1972 Water-drop response to sudden accelerations. J. Fluid Mech. 55 (4), 629639.CrossRefGoogle Scholar
Strani, M. & Sabetta, F. 1984 Free vibrations of a drop in partial contact with a solid support. J. Fluid Mech. 141, 233247.CrossRefGoogle Scholar
Thoraval, M.-J., Takehara, K., Etoh, T.G., Popinet, S., Ray, P., Josserand, C., Zaleski, S. & Thoroddsen, S.T. 2012 von Kármán vortex street within an impacting drop. Phys. Rev. Lett. 108 (26), 264506.CrossRefGoogle Scholar
Thoroddsen, S.T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.CrossRefGoogle Scholar
Thoroddsen, S.T., Etoh, T.G. & Takehara, K. 2003 Air entrapment under an impacting drop. J. Fluid Mech. 478, 125134.CrossRefGoogle Scholar
Thoroddsen, S.T., Etoh, T.G. & Takehara, K. 2008 High-speed imaging of drops and bubbles. Annu. Rev. Fluid Mech. 40, 257285.CrossRefGoogle Scholar
Thoroddsen, S.T., Thoraval, M.-J., Takehara, K. & Etoh, T.G. 2011 Droplet splashing by a slingshot mechanism. Phys. Rev. Lett. 106 (3), 034501.CrossRefGoogle ScholarPubMed
Tropea, C. & Marengo, M. 1999 The impact of drops on walls and films. Multiphase Sci. Technol. 11 (1), 19–36.CrossRefGoogle Scholar
Van Rossum, G. & Drake, F.L. 2009 Python 3 reference manual createspace. Scotts Valley, CA.Google Scholar
Versluis, M. 2013 High-speed imaging in fluids. Exp. Fluids 54 (2), 1458.Google Scholar
Van der Walt, S., Schönberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D., Yager, N., Gouillart, E. & Yu, T. 2014 Scikit-image: image processing in Python. PeerJ 2, e453.CrossRefGoogle ScholarPubMed
Woolf, D.K., et al. 2007 Modelling of bubble-mediated gas transfer: fundamental principles and a laboratory test. J. Mar. Syst. 66 (1–4), 7191.CrossRefGoogle Scholar
Worthington, A.M. 1877 XXVIII. On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc. R. Soc. Lond. A 25 (171–178), 261272.Google Scholar
Worthington, A.M. & Cole, R.S. 1897 V. Impact with a liquid surface, studied by the aid of instantaneous photography. Phil. Trans. R. Soc. Lond. A 189, 137148.Google Scholar
Yakhshi-Tafti, E., Cho, H.J. & Kumar, R. 2010 Impact of drops on the surface of immiscible liquids. J. Colloid Interface Sci. 350 (1), 373376.CrossRefGoogle ScholarPubMed
Yamamoto, K., Motosuke, M. & Ogata, S. 2018 Initiation of the worthington jet on the droplet impact. Appl. Phys. Lett. 112 (9), 093701.CrossRefGoogle Scholar
Yang, Z.Q., Tian, Y.S. & Thoroddsen, S.T. 2020 Multitude of dimple shapes can produce singular jets during the collapse of immiscible drop-impact craters. J. Fluid Mech. 904, A19.Google Scholar
Yarin, A.L., Roisman, I.V. & Tropea, C. 2017 Collision Phenomena in Liquids and Solids. Cambridge University Press.CrossRefGoogle Scholar
Zeff, B.W., Kleber, B., Fineberg, J. & Lathrop, D.P. 2000 Singularity dynamics in curvature collapse and jet eruption on a fluid surface. Nature 403 (6768), 401404.CrossRefGoogle ScholarPubMed
Zhang, L.V., Toole, J., Fezzaa, K. & Deegan, R.D. 2012 Evolution of the ejecta sheet from the impact of a drop with a deep pool. J. Fluid Mech. 690, 515.CrossRefGoogle Scholar

Roy et al. Supplementary Movie 1

Supplementary movie for impact Weber number (W e = 4). Recorded at 10000 FPS, playback speed 100FPS.
Download Roy et al. Supplementary Movie 1(Video)
Video 449.4 KB

Roy et al. Supplementary Movie 2

Supplementary movie for impact Weber number (W e = 16). Recorded at 10000 FPS, playback speed 10FPS.
Download Roy et al. Supplementary Movie 2(Video)
Video 1 MB

Roy et al. Supplementary Movie 3

Supplementary movie for impact Weber number (W e = 145). Recorded at 10000 FPS, playback speed 10FPS.
Download Roy et al. Supplementary Movie 3(Video)
Video 595.1 KB