Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-28T21:13:30.107Z Has data issue: false hasContentIssue false

On the lift and drag of cavitating profiles and the maximum lift and drag

Published online by Cambridge University Press:  11 October 2011

Dmitri V. Maklakov*
Affiliation:
Chebotarev Institute of Mathematics and Mechanics, Kazan Federal University, Nuzhina, 17, Kazan, 420008, Russia
*
Email address for correspondence: [email protected]

Abstract

In this paper, on the basis of the classical Levi-Civita formulae for hydrodynamic forces exerted on any profile in an infinite cavity flow, we deduce new representations for the lift and drag. In these representations the forces are expressed only in terms of the velocity distribution along the profile surface. So, the representations are analogous to the well-known Kutta–Joukowskii theorem. By means of the new representations we find optimum velocity distributions which provide the maximum lift or maximum drag of cavitating profiles and determine corresponding optimum shapes.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Birkhoff, G. & Zarantonello, E. 1957 Jets, Wakes and Cavities. Academic.Google Scholar
2. Brillouin, M. 1911 Les surfaces de glissement de Helmholtz et la resistance des fluides. Ann. Chemie et Phys. 23, 145230.Google Scholar
3. Elizarov, A. M., Kasimov, A. R & Maklakov, D. V. 2008 Problems of Shape Optimization in Aerohydrodynamics. Fizmatlit, in Russian.Google Scholar
4. Franc, J.-P. & Michel, J.-M. 2004 Fundamentals of Cavitation. Fluid Mechanics and its Applications, vol. 76 , Kluwer Academic.Google Scholar
5. Gilbarg, D. 1960 Jets, Wakes and Cavities, Encyclopedia of Physics, vol. 9 , pp. 311445. Springer.Google Scholar
6. Golubev, V. V. 1949 Lectures on wing theory. Moscow, Gostekhizdat (in Russian).Google Scholar
7. Gurevich, M. I. 1966 The Theory of Jets in an Ideal Fluid. Pergamon.Google Scholar
8. Lavrentiev, M. 1938 Sur certaines propriétés des fonctions univalentes et leurs applications à la théorie des sillages. Mat. Sbornik 46, 391458.Google Scholar
9. Levi-Civita, T. 1907 Scie e leggi di resistenza. Rendeconti del Circolo Matematico di Palermo 23, 137.CrossRefGoogle Scholar
10. Maklakov, D. V. 1988 The maximum resistance of a curvilinear obstacle subjected to the action of free jets with separation. Sov. Phys., Dokl. 33 (1), 1113. Translation from 1988 Dokl. Akad. Nauk SSSR 298 (3), 574–577.Google Scholar
11. Maklakov, D. V. 1997 Nonlinear problems of hydrodynamics of potential flows with unknown boundaries. Yanus-K. (in Russian).Google Scholar
12. Maklakov, D. V. 1999 A note on the optimum profile of a sprayless planing surface. J. Fluid Mech. 384, 281292.CrossRefGoogle Scholar
13. Maklakov, D. V. 2004 Some remarks on the exact solution for an optimal impermeable parachute problem. J. Comput. Appl. Math. 166 (2), 591596.CrossRefGoogle Scholar
14. Maklakov, D. V. 2005 On deflectors of optimum shape. J. Fluid Mech. 540, 175187.CrossRefGoogle Scholar
15. Maklakov, D. V., Elizarov, A. M. & Sharipov, R. R. 2007 On parachutes of optimum shape in a subsonic gas flow. Eur. J. Appl. Math. 18, 81102.CrossRefGoogle Scholar
16. Maklakov, D. V. & Uglov, A. N. 1995 On the maximum drag of a curved plate in flow with a wake. Eur. J. Appl. Math. 6 (5), 517527.CrossRefGoogle Scholar
17. Milne-Thomson, L. M. 1962 Theoretical Hydrodynamics, 4th edition. Macmillan.Google Scholar
18. Taylor, G. I. 1926 Note on the connection between the lift of an aërofoil in a wind and the circulation round it. Phil. Trans. R. Soc. Lond. A 225, 238245. Appendix to the paper by Bryant, L.W. & Williams, D.H., An nvestigation of the flow of air around an aërofoil of infinite span.Google Scholar
19. Wu, T. Y. 1972 Cavity and wake flows. Annu. Rev. Fluid Mech. 4, 243284.CrossRefGoogle Scholar
20. Wu, T. Y. & Whitney, A. K. 1972 Theory of optimum shapes in free-surface flows. Part 1. Optimum profile of sprayless planing surface. J. Fluid Mech. 55, 439455.CrossRefGoogle Scholar