Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T22:03:43.375Z Has data issue: false hasContentIssue false

On the inviscid stability of bi-layer axisymmetric coatings

Published online by Cambridge University Press:  23 May 2008

P. A. BLYTHE
Affiliation:
Mechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA 18015, USA
P. G. SIMPKINS
Affiliation:
College of Engineering, Syracuse University, Syracuse, NY 13244, USA

Abstract

This paper is concerned with the stability of fibre coatings at large Reynolds numbers. Both single- and double-layer coatings are considered; no restriction is placed on the coating thicknesses. Calculations for the maximum growth rate, together with the corresponding length scale of the instability, are presented. Rescaling with respect to the maximum growth rate generates universal dispersion relations over the unstable wavenumber range. For double-layer composite coatings, modifications are required when the density ratio becomes large.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Blythe, P. A. & Simpkins, P. G. 1995 Fiber coating thickness predictions at low capillary numbers. Bull. Am. Phys. Soc. 40, 2016.Google Scholar
Blythe, P. A. & Simpkins, P. G. 2002 Fiber coating instabilities: the inviscid limit. OFS Fitel Tech. Memo.Google Scholar
Blythe, P. A. & Simpkins, P. G. 2004 Fibre coating: non-unique solutions at small capillary numbers. J. Fluid Mech. 515, 353.CrossRefGoogle Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166.CrossRefGoogle Scholar
Darhuber, A. A., Trojan, S. M., Davis, J. M. & Miller, S. M. 2000 Selective dip-coating of chemically micro-patterned surfaces. J. Appl. Phys. 88, 5119.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1982 Hydrodynamic Stability, Chap. 1, § 5. Cambridge University Press.Google Scholar
Goren, S. L. 1962 The instability of an annular thread of fluid. J. Fluid Mech. 12, 309.CrossRefGoogle Scholar
Hammond, P. S. 1983 Nonlinear adjustment of a thin annular film of viscous fluid surrounding a thread of another within a circular cylindrical pipe. J. Fluid Mech. 137, 363.CrossRefGoogle Scholar
Ida, M. P. & Miksis, M. J. 1998 a The dynamics of thin films; I General theory. SIAM J. Appl. Maths. 58, 456.Google Scholar
Ida, M. P. & Miksis, M. J. 1998 b The dynamics of thin films; II Applications. SIAM J. Appl. Maths. 58, 474.Google Scholar
Jiang, Z., Kim, H., Mochrie, S. G. J., Lurio, L. B. & Sinha, S. K. 2006 Surface and interfacial dynamics of polymeric bilayer films. Phys. Rev. E 74, 11603.Google ScholarPubMed
Landau, L. & Levich, B. 1942 Dragging of a liquid by a moving plate. Acta Physiochim. USSR 17, 42.Google Scholar
Middleman, S. 1995 Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops, chap. 4, pp. 105 et seq. Academic.Google Scholar
Russo, M. J. & Steen, P. H. 1989 Shear stabilization of the capillary breakup of a cylindrical interface. Phys. Fluids A 1, 1926.CrossRefGoogle Scholar
Wang, C. K., Seaborg, J. J. & Lin, S. P. 1978 Instability of multi-layered liquid films. Phys. Fluids 21, 1669.CrossRefGoogle Scholar
Weinstein, S. J. & Chen, K. P. 1999 Large growth rate instabilities in three-layer flow down an incline in the limit of zero Reynolds number. Phys. Fluids 11, 3270.CrossRefGoogle Scholar
Weinstein, S. J. & Ruschak, K. J. 2004 Coating flows. Ann. Rev. Fluid Mech. 36, 29.CrossRefGoogle Scholar
Xu, Z. Z. & Davis, S.H. 1985 Instability of capillary jets with thermocapillarity. J. Fluid Mech. 161, 1.CrossRefGoogle Scholar