Published online by Cambridge University Press: 16 November 2010
An analytical theory is developed which illustrates dynamics of the spontaneous generation of large-scale structures in the unforced two-dimensional eddying flows. The eddy field is represented by the closely packed array of standing coherent vortices whose intensity is weakly modulated by the long-wavelength perturbations introduced into the system. The asymptotic multiscale analysis makes it possible to identify instabilities resulting from the positive feedback of the background eddies on large-scale perturbations. Initially, these instabilities amplify at a rate proportional to the square root of their wavenumber. Linear growth is arrested when the amplitude of the long-wavelength perturbations reaches the level of background eddies. The subsequent evolutionary pattern is characterized by the emergence of relatively sharp features in the large-scale streamfunction field – features suggestive of the coherent jets commonly observed in eddying geophysical flows. The proposed solutions differ substantially from their counterparts in forced-dissipative systems, exemplified by the canonical model of Kolmogorov flow. The asymptotic model is successfully tested against numerical simulations.