Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:38:38.045Z Has data issue: false hasContentIssue false

On the generation of large-scale eddy-driven patterns: the average eddy model

Published online by Cambridge University Press:  09 November 2016

Timour Radko*
Affiliation:
Department of Oceanography, Naval Postgraduate School, Monterey, CA 93943, USA
*
Email address for correspondence: [email protected]

Abstract

A theoretical model is developed which illustrates the dynamics of the spontaneous generation of large-scale structures in baroclinically unstable eddying flows. Techniques of asymptotic multiscale analysis are used to identify instabilities resulting from the positive feedback of the background eddies on large-scale perturbations. The novelty of the proposed approach lies in the choice of a dynamically consistent time-dependent background eddy field, which is taken from simulations of baroclinic instability in the Phillips two-layer system. The resulting solutions differ considerably from those of traditional multiscale models, in which the background eddy field is represented by steady analytical patterns. The present formulation makes it possible to (i) test the multiscale theory against the corresponding numerical simulations, (ii) unambiguously interpret the key physical processes at play and (iii) rationalize the emergence of large-scale patterns for certain background parameters. While the proposed approach to multiscale modelling is illustrated on a particular example of the Phillips baroclinic instability model, it is our belief that the presented technique is readily adaptable to a wide range of applications.

Type
Papers
Copyright
© Cambridge University Press 2016. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J. & Young, Y.-N. 2002 Stratified Kolmogorov flow. J. Fluid Mech. 450, 131167.Google Scholar
Balmforth, N. J. & Young, Y.-N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.Google Scholar
Benilov, E. S. 2000 The dynamics of a near-surface vortex in a two-layer ocean on the beta-plane. J. Fluid Mech. 420, 277299.Google Scholar
Bensoussan, A., Lions, J. & Papanicolaou, G. 1978 Asymptotic Analysis for Periodic Structures. North-Holland.Google Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009 A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.Google Scholar
Berloff, P., Karabasov, S., Farrar, T. & Kamenkovich, I. 2011 On latency of multiple zonal jets in the oceans. J. Fluid Mech. 686, 534567.Google Scholar
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I: interfacial free energy. J. Chem. Phys. 28, 258267.Google Scholar
Chaves, M. & Gama, S. 2000 Time evolution of the eddy viscosity in two-dimensional Navier–Stokes flow. Phys. Rev. E 61, 21182120.Google Scholar
Connaughton, C. P., Nadiga, B. T., Nazarenko, S. V. & Quinn, B. E. 2010 Modulational instability of Rossby and drift waves and generation of zonal jets. J. Fluid Mech. 654, 207231.Google Scholar
Cummins, P. F. & Holloway, G. 2010 Reynolds stress and eddy viscosity in direct numerical simulations of sheared two-dimensional turbulence. J. Fluid. Mech. 657, 394412.Google Scholar
Cushman-Roisin, B., McLaughlin, D. & Papanicolaou, G. 1984 Interactions between mean flow and finite-amplitude mesoscale eddies in a barotropic ocean. Geophys. Astrophys. Fluid Dyn. 29, 333353.Google Scholar
Dritschel, D. & McIntyre, M. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.Google Scholar
Frisch, U., Legras, B. & Villone, B. 1996 Large scale Kolmogorov flow on the beta-plane and resonant wave interaction. Physica D 94, 3656.Google Scholar
Frisch, U., She, Z. & Sulem, P. 1987 Large-scale flow driven by the anisotropic kinetic alpha effect. Physica D 28, 382392.Google Scholar
Gama, S., Vergassola, M. & Frisch, U. 1994 Negative eddy viscosity in isotropically forced 2-dimensional flow – linear and nonlinear dynamics. J. Fluid Mech. 260, 95126.Google Scholar
Gille, S. & Davis, R. 1999 The influence of mesoscale eddies on coarsely resolved density: an examination of subgrid-scale parameterization. J. Phys. Oceanogr. 29, 11091123.Google Scholar
Held, I. 1975 Momentum transport by quasi-geostrophic eddies. J. Atmos. Sci. 32, 14941497.Google Scholar
Held, I. M. & Larichev, V. D. 1996 A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J. Atmos. Sci. 53, 946952.Google Scholar
Huang, H.-P. & Robinson, W. 1998 Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55, 611632.Google Scholar
Jansen, M. F., Adcroft, A. J., Hallberg, R. & Held, I. M. 2015 Parameterization of eddy fluxes based on a mesoscale energy budget. Ocean Model. 92, 2841.Google Scholar
Jansen, M. F. & Held, I. M. 2014 Parameterizing subgrid-scale eddy effects using energetically consistent backscatter. Ocean Model. 80, 3648.Google Scholar
Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009 Anisotropic material transport by eddies and eddy-driven currents in a model of the North Atlantic. J. Phys. Oceanogr. 39, 31623175.Google Scholar
Kamenkovich, I., Rypina, I. & Berloff, P. 2015 Properties and origins of the anisotropic eddy-induced transport in the North Atlantic. J. Phys. Oceanogr. 45, 778791.Google Scholar
Kamenkovich, V. M., Koshlyakov, M. N. & Monin, A. S. 1986 Synoptic Eddies in the Ocean. Springer.Google Scholar
Kevorkian, J. & Cole, J. D. 1996 Multiple Scale and Singular Perturbation Methods, p. 632. Springer.Google Scholar
Kraichnan, R. & Montgomery, D. 1980 Two-dimensional turbulence. Rep. Prog. Phys. 43, 547619.Google Scholar
Kraichnan, R. H. 1967 Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 14171423.Google Scholar
LaCasce, J. & Pedlosky, J. 2004 The instability of Rossby basin modes and the oceanic eddy field. J. Phys. Oceanogr. 34, 20272041.Google Scholar
Larichev, V. D. & Held, I. M. 1995 Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J. Phys. Oceanogr. 25, 22852297.Google Scholar
Legras, B. & Villone, B. 2009 Large-scale instability of a generalized turbulent Kolmogorov flow. Nonlinear Process. Geophys. 16, 569577.Google Scholar
Lorenz, E. N. 1972 Barotropic instability of Rossby wave motion. J. Atmos. Sci. 29, 258269.Google Scholar
Manfroi, A. & Young, W. 1999 Slow evolution of zonal jets on the beta plane. J. Atmos. Sci. 56, 784800.Google Scholar
Manfroi, A. & Young, W. 2002 Stability of beta-plane Kolmogorov flow. Physica D 162, 208232.Google Scholar
Matulka, A. M. & Afanasyev, Y. D. 2015 Zonal jets in equilibrating baroclinic instability on the polar beta-plane: experiments with altimetry. J. Geophys. Res. Oceans 120, 61306144.Google Scholar
Maximenko, N., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.Google Scholar
McWilliams, J. C. & Chow, J. H. S. 1981 Equilibrium geostrophic turbulence. I: a reference solution in a beta-plane channel. J. Phys. Oceanogr. 11, 921949.Google Scholar
Mei, C. C. & Vernescu, M. 2010 Homogenization Methods for Multiscale Mechanics. World Scientific Publishing.Google Scholar
Melnichenko, O. V., Maximenko, N. A., Schneider, N. & Sasaki, H. 2010 Quasi-stationary striations in basin-scale oceanic circulation: vorticity balance from observations and eddy-resolving model. Ocean Dyn. 60, 653666.Google Scholar
Meshalkin, L. & Sinai, Y. 1961 Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid. Z. Angew. Math. Mech. 25, 17001705.Google Scholar
Nadiga, B. 2006 On zonal jets in oceans. Geophys. Res. Lett. 33, L10601.Google Scholar
Nadiga, B. T. & Straub, D. N. 2010 Alternating zonal jets and energy fluxes in barotropic wind-driven gyres. Ocean Model. 33, 257269.Google Scholar
Nakamura, M. & Chao, Y. 2000 On the eddy isopycnal thickness diffusivity of the Gent–McWilliams subgrid mixing parameterization. J. Clim. 13, 502510.Google Scholar
Nakano, H. & Hasumi, H. 2005 A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr. 35, 474488.Google Scholar
Nepomnyashchy, A. 1976 On the stability of the secondary flow of a viscous fluid in an infinite domain. Z. Angew. Math. Mech. Appl. Math. Mech. 40, 886891.Google Scholar
Nof, D. 1981 On the beta-induced movement of isolated baroclinic eddies. J. Phys. Oceanogr. 11, 16621672.Google Scholar
Nof, D. 1983 On the migration of isolated eddies with application to Gulf Stream rings. J. Mar. Res. 41, 399425.Google Scholar
Novikov, A. & Papanicolau, G. 2001 Eddy viscosity of cellular flows. J. Fluid Mech. 446, 173198.Google Scholar
Nowlin, W. & Klinck, J. 1986 The physics of the Antarctic circumpolar current. Rev. Geophys. 24, 469491.Google Scholar
Orsi, A. H., Whitworth, T. & Nowlin, W. 1995 On the meridional extent and fronts of the Antarctic circumpolar current. Deep-Sea Res. 42, 641673.Google Scholar
Pedlosky, J. 1970 Finite-amplitude baroclinic waves. J. Atmos. Sci. 27, 1530.Google Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics. Springer.Google Scholar
Phillips, N. A. 1951 A simple three-dimensional model for the study of large scale extra tropical flow pattern. J. Met. 8, 381394.Google Scholar
Radko, T. 2011a On the generation of large-scale structures in a homogeneous eddy field. J. Fluid Mech. 668, 7699.Google Scholar
Radko, T. 2011b Mechanics of thermohaline interleaving: beyond the empirical flux laws. J. Fluid Mech. 675, 117140.Google Scholar
Radko, T. 2011c Eddy viscosity and diffusivity in the modon-sea model. J. Mar. Res. 69, 723752.Google Scholar
Radko, T. 2014 Applicability and failure of the flux-gradient laws in double-diffusive convection. J. Fluid Mech. 750, 3372.Google Scholar
Radko, T., Peixoto de Carvalho, D. & Flanagan, J. 2014 Nonlinear equilibration of baroclinic instability: the growth rate balance model. J. Phys. Oceanogr. 44, 19191940.Google Scholar
Radko, T. & Stern, M. E. 1999 On the propagation of oceanic mesoscale vortices. J. Fluid Mech. 380, 3957.Google Scholar
Radko, T. & Stern, M. E. 2000 Self-propagating eddies on the stratifed f-plane. J. Phys. Oceanogr. 30, 31343144.Google Scholar
Reznik, G. M. & Dewar, W. K. 1994 An analytical theory of distributed axisymmetrical barotropic vortices on the beta-plane. J. Fluid Mech. 269, 301321.Google Scholar
Rhines, P. B. 1977 The dynamics of unsteady currents. In The Sea (ed. Goldberg, E. A. et al. ), Marine Modeling, vol. 6, pp. 189318. Wiley.Google Scholar
Rhines, P. B. 1994 Jets. Chaos 4, 313339.Google Scholar
Richards, K., Maximenko, N., Bryan, F. & Sasaki, H. 2006 Zonal jets in the Pacific Ocean. Geophys. Res. Lett. 33, L03605.Google Scholar
Roberts, M. & Marshall, D. 2000 On the validity of downgradient eddy closures in ocean models. J. Geophys. Res. 105, 2861328627.Google Scholar
Robinson, A. R.(Ed.) 1983 Eddies in Marine Science. Springer.Google Scholar
Shepherd, T. G. 1988 Nonlinear saturation of baroclinic instability. Part I: the two-layer model. J. Atmos. Sci. 45, 20142025.Google Scholar
Sivashinsky, G. 1985 Weak turbulence in periodic flows. Physica D 17, 243255.Google Scholar
Sokolov, S. & Rintoul, S. 2007 Multiple jets of the Antarctic circumpolar current south of Australia. J. Phys. Oceanogr. 37, 13941412.Google Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.Google Scholar
Starr, V. P. 1968 Physics of Negative Viscosity Phenomena. McGraw-Hill.Google Scholar
Stern, M. E. 1960 The ‘salt-fountain’ and thermohaline convection. Tellus 12, 172175.Google Scholar
Sulem, P., She, Z., Scholl, H. & Frisch, U. 1989 Generation of large-scale structures in three-dimensional flow lacking parity-invariance. J. Fluid Mech. 205, 341358.Google Scholar
Sutyrin, G. G. & Dewar, W. K. 1992 Almost symmetrical solitary eddies in a 2-layer ocean. J. Fluid Mech. 238, 633656.Google Scholar
Thompson, A. F. & Young, W. R. 2006 Scaling baroclinic eddy fluxes: vortices and energy balance. J. Phys. Oceanogr. 36, 720738.Google Scholar
Thompson, A. F. & Young, W. R. 2007 Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance. J. Atmos. Sci. 64, 32143231.Google Scholar
Wirth, A., Gama, S. & Frisch, U. 1995 Eddy viscosity of three-dimensional flow. J. Fluid Mech. 288, 249264.Google Scholar