Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-08T16:27:09.143Z Has data issue: false hasContentIssue false

On the fine-scale intermittency of turbulence

Published online by Cambridge University Press:  20 April 2006

K. R. Sreenivasan
Affiliation:
Applied Mechanics, Mason Laboratory, Yale University

Abstract

This paper presents a simple theory for evaluating the several measures used to characterize the intermittency of fine-scale turbulence, and corroborates the theoretical results from comparison with experimental data, some of which are new. The basic analytical tool is the envelope of the narrow-bandpass-filtered turbulent signal, defined via its Hilbert transform and the analytic signal. The contribution of this paper is twofold. First, it correctly identifies the roles played by the filter characteristics (such as the bandwidth) in determining the intermittency factor, the width of the active regions (pulses) in narrow-bandpass-filtered turbulent signals, and the pulse frequency; it also reveals that all dynamical characteristics of the signal enter indirectly through the peak pulse frequency and the threshold setting. Secondly, the theory suggests that, in the far-dissipation range, the most important feature of signals exhibiting internal intermittency is the stronger-than-algebraic roll-off of the spectral density in that region; it is argued that this feature of turbulence essentially determines the peak pulse frequency in that region. The theory is incomplete in that it does not show how the threshold setting depends on the signal dynamics, but here the discussion is supplemented by experimental data.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia R. A., Danh, H. Q. & Prabhu A.1976 Phys. Fluids 19, 1680.
Badri Narayanan, M. A., Narasimha, R. & Rao, K. N. 1971 In Proc. 4th Australasian Conf. on Hydraulics and Fluid Mechanics, Monash University, Melbourne, Australia, p. 73.
Badri Narayanan, M. A., Rajagopalan, S. & Narasimha, R. 1974 Rep. 74 FM 15, Dept Aero. Engng, Indian Institute of Science, Bangalore.
Badri Narayanan, M. A., Rajagopalan, S. & Narasimha, R. 1977 J. Fluid Mech. 80, 237.
Batchelor, G. K. & Townsend A. A.1949 Proc. R. Soc. Lond. A 199, 238.
Bendat, J. S. & Piersol A. G.1971 Random Data: Analysis and Measurement Procedures. Wiley.
Bracewell R.1965 The Fourier Transform and Its Applications. McGraw-Hill.
Brachet M. E., Meiron D. I., Orszag S. A., Nickel B. G., Morf, R. H. & Frisch U.1983 J. Fluid Mech. 130, 411.
Comte-Bellot, G. & Corrsin S.1971 J. Fluid Mech. 48, 273.
Corrsin S.1962 Phys. Fluids 5, 1301.
Cramer, H. & Leadbetter M. R.1967 Stationary and Related Stochastic Processes. Wiley.
Frisch, U. & Morf R.1981 Phys. Rev. A 23, 2673.
Frisch U., Sulem, P.-L. & Nelkin M.1978 J. Fluid Mech. 87, 719.
Grant H. L., Stewart, R. W. & Moilliet A.1962 J. Fluid Mech. 12, 241.
Hedley, T. B. & Keffer J. F.1974 J. Fluid Mech. 64, 625.
Kennedy, D. A. & Corrsin S.1961 J. Fluid Mech. 10, 366.
Klebanoff P.1955 NACA Tech. Rep. 1247.
Kolmogorov A. N.1941 C.R. Acad. Sci. USSR 30, 301.
Kolmogorov A. N.1962 J. Fluid Mech. 13, 81.
Kraichnan R. H.1967 Phys. Fluids 10, 2080.
Kraichnan R. H.1974 J. Fluid Mech. 62, 305.
Kuo, A. Y. S. & Corrsin S.1971 J. Fluid Mech. 50, 285.
Kuo, A. Y. S. & Corrsin S.1972 J. Fluid Mech. 56, 447.
Laufer J.1954 NACA Tech. Rep. 1174.
Mandelbrot B.1976 In Turbulence and Navier—Stokes Equations (ed. R. Temam). Lecture Notes in Maths, vol. 565, p. 121. Springer.
Novikov, E. A. & Stewart R. W.1964 Izv. Acad. Sci. USSR, Geophys. Ser. 3, 408.
Rao K. N., Narasimha, R. & Badri Narayanan M. A.1971 J. Fluid Mech. 48, 339.
Ruelle D.1980 Math. Int. 2, 126.
Saffman P. G.1968 Lectures in homogeneous turbulence. In Topics in Nonlinear Physics (ed. N. Zabusky), p. 485. Springer.
Sandborn V. A.1959 J. Fluid Mech. 6, 211.
Siggia E.1981 J. Fluid Mech. 107, 375.
Sreenivasan K. R.1984 Phys. Fluids 27, 1048.
Stewart, R. W. & Townsend A. A.1951 Phil. Trans. R. Soc. Lond. A 243, 359.
Tennekes H.1968 Phys. Fluids 11, 669.
Townsend A. A.1948 Austral. J. Sci. Res. A 1, 161.
Townsend A. A.1951 Proc. R. Soc. Lond. A 208, 534.
Ueda, H. & Hinze J. O.1975 J. Fluid Mech. 67, 137.
Van Atta, C. W. & Antonia, R. A. 1980 Phys. Fluids 23, 252.
Yaglom A. M.1966 Sov. Phys. Dokl. 11, 26.