Article contents
On the dynamics of finite-amplitude baroclinic waves as a function of supercriticality
Published online by Cambridge University Press: 11 April 2006
Abstract
A finite-amplitude model of baroclinic instability is studied in the case where the cross-stream scale is large compared with the Rossby deformation radius and the dissipative and advective time scales are of the same order. A theory is developed that describes the nature of the wave field as the shear supercriticality increases beyond the stability threshold of the most unstable cross-stream mode and penetrates regions of higher supercriticality. The set of possible steady nonlinear modes is found analytically. It is shown that the steady cross-stream structure of each finite-amplitude mode is a function of the supercriticality.
Integrations of initial-value problems show, in each case, that the final state realized is the state characterized by the finite-amplitude mode with the largest equilibrium amplitude. The approach to this steady state is oscillatory (nonmonotonic). Further, each steady-state mode is a well-defined mixture of linear cross-stream modes.
- Type
- Research Article
- Information
- Copyright
- © 1976 Cambridge University Press
References
- 4
- Cited by