Published online by Cambridge University Press: 25 January 2019
In rough-wall boundary layers, wall-parallel non-homogeneous mean-flow solutions exist that lead to so-called dispersive velocity components and dispersive stresses. They play a significant role in the mean-flow momentum balance near the wall, but typically disappear in the outer layer. A theoretical framework is presented to study the decay of dispersive motions in the outer layer. To this end, the problem is formulated in Fourier space, and a set of governing ordinary differential equations per mode in wavenumber space is derived by linearizing the Reynolds-averaged Navier–Stokes equations around a constant background velocity. With further simplifications, analytically tractable solutions are found consisting of linear combinations of $\exp (-kz)$ and $\exp (-Kz)$, with $z$ the wall distance, $k$ the magnitude of the horizontal wavevector $\boldsymbol{k}$, and where $K(\boldsymbol{k},Re)$ is a function of $\boldsymbol{k}$ and the Reynolds number $Re$. Moreover, for $k\rightarrow \infty$ or $k_{1}\rightarrow 0$ (with $k_{1}$ the stream-wise wavenumber), $K\rightarrow k$ is found, in which case solutions consist of a linear combination of $\exp (-kz)$ and $z\exp (-kz)$, and are independent of the Reynolds number. These analytical relations are compared in the limit of $k_{1}=0$ to the rough boundary layer experiments by Vanderwel & Ganapathisubramani (J. Fluid Mech., vol. 774, 2015, R2) and are in reasonable agreement for $\ell _{k}/\unicode[STIX]{x1D6FF}\leqslant 0.5$, with $\unicode[STIX]{x1D6FF}$ the boundary-layer thickness and $\ell _{k}=2\unicode[STIX]{x03C0}/k$.