Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-08T10:38:49.891Z Has data issue: false hasContentIssue false

On the damped oscillations of an elastic quasi-circular membrane in a two-dimensional incompressible fluid

Published online by Cambridge University Press:  01 April 2014

Marco Martins Afonso*
Affiliation:
Institut de Mathématiques et de Modélisation de Montpellier, CNRS UMR 5149, Université Montpellier 2, CC 051, 34095 Montpellier CEDEX 5, France Laboratoire de Mécanique, Modélisation et Procédés Propres, CNRS UMR 7340, Aix-Marseille Université, Ecole Centrale Marseille, 13451 Marseille CEDEX 13, France
Simon Mendez
Affiliation:
Institut de Mathématiques et de Modélisation de Montpellier, CNRS UMR 5149, Université Montpellier 2, CC 051, 34095 Montpellier CEDEX 5, France
Franck Nicoud
Affiliation:
Institut de Mathématiques et de Modélisation de Montpellier, CNRS UMR 5149, Université Montpellier 2, CC 051, 34095 Montpellier CEDEX 5, France
*
Email address for correspondence: [email protected]

Abstract

We propose a procedure – partly analytical and partly numerical – to find the frequency and the damping rate of the small-amplitude oscillations of a massless elastic capsule immersed in a two-dimensional viscous incompressible fluid. The unsteady Stokes equations for the stream function are decomposed into normal modes for the angular and temporal variables, leading to a fourth-order linear ordinary differential equation in the radial variable. The forcing terms are dictated by the properties of the membrane and result in jump conditions at the interface between the internal and external media. The equation can be solved numerically, and excellent agreement is found with a fully computational approach that we have developed in parallel. Comparisons are also shown with results available in the scientific literature for drops, and a model based on the concept of entrained fluid is presented, which allows for a good representation of the present results and a consistent interpretation of the underlying physics.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi Chebel, N., Vejražka, J., Masbernat, O. & Risso, F. 2012 Shape oscillations of an oil drop rising in water: effect of surface contamination. J. Fluid Mech. 702, 533542.Google Scholar
Bagheri, S., Mazzino, A. & Bottaro, A. 2012 Spontaneous symmetry breaking of a hinged flapping filament generates lift. Phys. Rev. Lett. 109, 154502.Google Scholar
Biben, T., Farutin, A. & Misbah, C. 2011 Three-dimensional vesicles under shear flow: numerical study of dynamics and phase diagram. Phys. Rev. E 83, 031921.Google Scholar
Boedec, G., Jaeger, M. & Leonetti, M. 2012 Settling of a vesicle in the limit of quasispherical shapes. J. Fluid Mech. 690, 227261.Google Scholar
Breyiannis, G. & Pozrikidis, C. 2000 Simple shear flow of suspensions of elastic capsules. Theor. Comput. Fluid Dyn. 13, 327347.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Cottet, G.-H. & Maitre, E. 2006 A level set method for fluid–structure interactions with immersed surfaces. Math. Models Meth. Appl. Sci. 16 (3), 415438.Google Scholar
Fraser, K. H., Tskain, M. E., Griffith, B. P. & Wu, Z. J. 2011 The use of computational fluid dynamics in the development of ventricular assist devices. Med. Engng Phys. 33, 263280.Google Scholar
Ghigliotti, G., Biben, T. & Misbah, C. 2010 Rheology of a dilute two-dimensional suspension of vesicles. J. Fluid Mech. 653, 489518.CrossRefGoogle Scholar
Gray, A. 1997 Curvature of curves in the plane. In Modern Differential Geometry of Curves and Surfaces with Mathematica, Chapman & Hall/CRC Press.Google Scholar
Greengard, L. & Kropinski, M. C. 1998 An integral equation approach to the incompressible Navier–Stokes equations in two dimensions. SIAM J. Sci. Comput. 20 (1), 318336.CrossRefGoogle Scholar
Hu, X.-Q., Salsac, A.-V. & Barthès-Biesel, D. 2012 Flow of a spherical capsule in a pore with circular or square cross-section. J. Fluid Mech. 705, 176194.Google Scholar
Jiang, S., Kropinski, M. C. A. & Quaife, B. D. 2013 Second kind integral equation formulations for the modified biharmonic equation and its applications. J. Comput. Phys. 249, 113126.CrossRefGoogle Scholar
Jiang, S., Veerapaneni, S. & Greengard, L. 2012 Integral equation methods for unsteady Stokes flow in two dimensions. SIAM J. Sci. Comput. 34 (4), A2197A2219.Google Scholar
Kelvin, Lord 1890 Oscillations of a liquid sphere. Mathematical and Physical Papers. Clay and Sons.Google Scholar
Kim, Y. & Lai, M.-C. 2010 Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method. J. Comput. Phys. 229, 48404853.Google Scholar
Kropinski, M. C. A. & Lushi, E. 2011 Efficient numerical methods for multiple surfactant-coated bubbles in a two-dimensional Stokes flow. J. Comput. Phys. 230, 44664487.Google Scholar
Lac, E., Morel, A. & Barthès-Biesel, D. 2007 Hydrodynamic interaction between two identical capsules in simple shear flow. J. Fluid Mech. 573, 149169.Google Scholar
Lamb, H. 1932 Hydrodynamics. 6th edn. Cambridge University Press.Google Scholar
Le, D.-V., Khoo, B. C. & Peraire, J. 2006 An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries. J. Comput. Phys. 220, 109138.Google Scholar
Lee, L. & Leveque, R. J. 2003 An immersed interface method for incompressible Navier–Stokes equations. SIAM J. Sci. Comput. 25 (3), 832856.Google Scholar
Lu, H.-L. & Apfel, R. E. 1991 Shape oscillations of drops in the presence of surfactants. J. Fluid Mech. 222, 351368.Google Scholar
Mendez, S., Gibaud, E. & Nicoud, F. 2014 An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers. J. Comput. Phys. 256 (1), 465483.Google Scholar
Miller, C. A. & Scriven, L. E. 1968 The oscillations of a fluid droplet immersed in another fluid. J. Fluid Mech. 32 (3), 417435.Google Scholar
Moureau, V., Domingo, P. & Vervisch, L. 2011a Design of a massively parallel CFD code for complex geometries. C. R. Méc. 339 (2–3), 141148.Google Scholar
Moureau, V., Domingo, P. & Vervisch, L. 2011b From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: filtered laminar flame-PDF modelling. Comput. Fluids 158, 13401357.Google Scholar
Nicoud, F., Benoit, L. & Sensiau, C. 2007 Acoustic modes in combustors with complex impedances and multidimensional active flames. AIAA J. 45 (2), 426441.CrossRefGoogle Scholar
Padrino, J. C., Funada, T. & Joseph, D. D. 2008 Purely irrotational theories for the viscous effects on the oscillations of drops and bubbles. Intl J. Multiphase Flow 34 (1), 6175.CrossRefGoogle Scholar
Peng, Z., Asaro, R. J. & Zhu, Q. 2011 Multiscale modelling of erythrocytes in Stokes flow. J. Fluid Mech. 686, 299337.Google Scholar
Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220252.CrossRefGoogle Scholar
Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 479517.Google Scholar
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.CrossRefGoogle Scholar
Pozrikidis, C. 1995 Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow. J. Fluid Mech. 297, 123152.CrossRefGoogle Scholar
Pozrikidis, C. 2010 Computational Hydrodynamics of Capsules and Biological Cells. Chapman & Hall/CRC Press.Google Scholar
Prosperetti, A. 1980a Free oscillations of drops and bubbles: the initial-value problem. J. Fluid Mech. 100 (2), 333347.Google Scholar
Prosperetti, A. 1980b Normal-mode analysis for the oscillations of a viscous liquid drop in an immiscicle liquid. J. Méc. 19 (1), 149182.Google Scholar
Rayleigh, Lord 1896 The Theory of Sound. 2nd edn. Macmillan.Google Scholar
Rochal, S. B., Lorman, V. L. & Mennessier, G. 2005 Viscoelastic dynamics of spherical composite vesicles. Phys. Rev. E 71, 021905.Google Scholar
Salac, D. & Miksis, M. 2011 A level set projection model of lipid vesicles in general flows. J. Comput. Phys. 230, 81928215.Google Scholar
Salac, D. & Miksis, M. 2012 Reynolds number effects on lipid vesicles. J. Fluid Mech. 711, 122146.CrossRefGoogle Scholar
Sohn, J. S., Tseng, Y.-H., Li, S., Voigt, A. & Lowengrub, J. S. 2010 Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys. 229, 119144.Google Scholar
Song, P., Hu, D. & Zhang, P. 2008 Numerical simulation of fluid membranes in two-dimensional space. Commun. Comput. Phys. 3 (4), 794821.Google Scholar
Tan, Z., Le, D. V., Li, Z., Lim, K. M. & Khoo, B. C. 2008 An immersed interface method for solving incompressible viscous flows with piecewise constant viscosity across a moving elastic membrane. J. Comput. Phys. 227, 99559983.Google Scholar
Tu, C. & Peskin, C. S. 1992 Stability and instability in the computation of flows with moving immersed boundaries: a comparison of three methods. SIAM J. Sci. Stat. Comput. 13 (6), 13611378.Google Scholar
Veerapaneni, S. K., Gueyffier, D., Zorin, D. & Biros, G. 2009 A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2D. J. Comput. Phys. 228, 23342353.Google Scholar
Veerapaneni, S. K., Rahimian, A., Biros, G. & Zorin, D. 2011 A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys. 230, 56105634.Google Scholar
Walter, J., Salsac, A.-V. & Barthès-Biesel, D. 2011 Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes. J. Fluid Mech. 676, 318347.CrossRefGoogle Scholar
Woolfenden, H. C. & Blyth, M. G. 2011 Motion of a two-dimensional elastic capsule in a branching channel flow. J. Fluid Mech. 669, 331.CrossRefGoogle Scholar
Yazdani, A. Z. K. & Bagchi, P. 2013 Influence of membrane viscosity on capsule dynamics in shear flow. J. Fluid Mech. 718, 569595.Google Scholar
Zhang, J., Childress, S., Libchaber, A. & Shelley, M. 2000 Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind. Nature 408, 835839.Google Scholar
Zhao, H., Isfahani, A. H. G., Olson, L. N. & Freund, J. B. 2010 A spectral boundary integral method for flowing blood cells. J. Comput. Phys. 229, 37263744.Google Scholar
Zhao, H. & Shaqfeh, E. S. 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.Google Scholar