Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T21:54:30.558Z Has data issue: false hasContentIssue false

On the coherent structures and stability properties of a leading-edge separated aerofoil with turbulent recirculation

Published online by Cambridge University Press:  19 August 2011

V. Kitsios*
Affiliation:
Institut PPRIME, CNRS – Université de Poitiers – ENSMA, UPR 3346, Département Fluides, Thermique, Combustion, CEAT, 43 rue de l’Aérodrome, F-86036 Poitiers CEDEX, France Walter Bassett Aerodynamics Laboratory, Department of Mechanical Engineering, University of Melbourne, Parkville 3010, Australia
L. Cordier
Affiliation:
Institut PPRIME, CNRS – Université de Poitiers – ENSMA, UPR 3346, Département Fluides, Thermique, Combustion, CEAT, 43 rue de l’Aérodrome, F-86036 Poitiers CEDEX, France
J.-P. Bonnet
Affiliation:
Institut PPRIME, CNRS – Université de Poitiers – ENSMA, UPR 3346, Département Fluides, Thermique, Combustion, CEAT, 43 rue de l’Aérodrome, F-86036 Poitiers CEDEX, France
A. Ooi
Affiliation:
Walter Bassett Aerodynamics Laboratory, Department of Mechanical Engineering, University of Melbourne, Parkville 3010, Australia
J. Soria
Affiliation:
Laboratory for Turbulence Research in Aerospace and Combustion, Department of Mechanical and Aerospace Engineering, Monash University, Clayton 3800, Australia
*
Email address for correspondence: [email protected]

Abstract

The present study is motivated by a need to produce stability modes to assist in the understanding and control of unsteady separated flows. The flow configuration is a NACA 0015 aerofoil with laminar leading-edge separation and turbulent recirculation. In previous water tunnel experiments, this flow configuration was measured in an unperturbed (uncontrolled) separated state, and a harmonically perturbed (controlled) reattached state. This study presents numerical data of the unperturbed case, and recovers stability modes to describe the evolution of perturbations in this environment. The unperturbed flow is numerically generated using large eddy simulation. Its temporal properties are quantified via a Fourier analysis of the velocity time history at selected points in space. The leading-edge shear layer instability is characterized by instantaneous vortex structures, and the bluff body shedding is illustrated by proper orthogonal decomposition modes. Statistical measures of the velocity field agree well with the water tunnel measurements. Finally a stability analysis is undertaken using a triple decomposition to distinguish between the time averaged field, the unsteady scales of motion, and a coherent wave (perturbation). This analysis identifies that perturbations in the region immediately downstream of the separated shear layer have the highest spatial growth rates. The associated frequency is of the order of the sub-harmonic of the shear layer instability.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale 3195, Australia.

References

1. Amitay, M., Smith, D. R., Kibens, V., Parekh, D. E. & Glezer, A. 2001 Aerodynamic flow control over an unconventional airfoil using synthetic jet actuators. AIAA J. 39 (3), 361370.CrossRefGoogle Scholar
2. Anderson, E., Bai, Z., Bischof, C. H., Blackford, S., Demmel, J. W., Dongarra, J. J., Croz, J. J. Du, Greenbaum, A., Hammarling, S. J., McKenney, A. & Sorensen, D. C. 1999 LAPACK Users’ Guide, 3rd edn. SIAM.CrossRefGoogle Scholar
3. Bergmann, M. & Cordier, L. 2008 Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227, 78137840.CrossRefGoogle Scholar
4. Cordier, L. & Bergmann, M. 2008 Proper Orthogonal Decomposition: an overview. In Lecture Series 2008 on Post-processing of Experimental and Numerical Data. Von Kármán Institute for Fluid Dynamics.Google Scholar
5. Frohlich, J., Mellen, P. C., Rodi, W., Temmerman, L. & Leschziner, A. 2005 Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 1966.CrossRefGoogle Scholar
6. Gaster, M. 1968 Growth of disturbances in both space and time. Phys. Fluids 11 (4), 723727.CrossRefGoogle Scholar
7. Germano, M., Piomelli, U., Moin, P. & Cabot, W. H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3 (7), 17601765.CrossRefGoogle Scholar
8. Gilarranz, J. L., Traub, L. & Rediniotis, O. K. 2005 A new class of synthetic jet actuators – part II: application to flow separation control. Trans. ASME: J. Fluids Engng 127, 377387.Google Scholar
9. Greenblatt, D. & Wygnanski, I. J. 2000 The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36, 487545.CrossRefGoogle Scholar
10. Grosch, C. E. & Salwen, H. 1978 The continuous spectrum of the Orr–Sommerfeld equation. Part 1. The spectrum and eigenfunctions. J. Fluid Mech. 87, 3354.CrossRefGoogle Scholar
11. Gross, A. & Fasel, H. F. 2005 Numerical investigation of low-pressure turbine blade separation control. AIAA J. 43, 25142526.CrossRefGoogle Scholar
12. Ho, C. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
13. Hoarau, Y., Braza, M., Ventikos, Y., Faghani, D. & Tzabiras, G. 2003 Organized modes and the three-dimensional transition to turbulence in the incompressible flow around a NACA 0012 wing. J. Fluid Mech. 496, 6372.CrossRefGoogle Scholar
14. Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream, and convergence zones in turbulent flows. Center for Turbulence Research Report CTR-S88, pp. 193–208.Google Scholar
15. Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanisms of an organised wave in turbulent shear flow. J. Fluid Mech. 41 (2), 241258.CrossRefGoogle Scholar
16. Kitsios, V. 2010 Recovery of fluid mechanical modes in unsteady separated flows. PhD thesis, The University of Melbourne and Université de Poitiers.Google Scholar
17. Kitsios, V., Cordier, L., Bonnet, J.-P., Ooi, A. & Soria, J. 2010 Development of a non-linear eddy viscosity closure for the triple decomposition stability analysis of a turbulent channel. J. Fluid Mech. 664, 74107.CrossRefGoogle Scholar
18. Kitsios, V., Rodriguez, D., Ooi, A., Theofilis, V. & Soria, J. 2009 BiGlobal stability analysis in curvilinear coordinates of massively separated lifting bodies. J. Comput. Phys. 228, 71817196.CrossRefGoogle Scholar
19. Lilly, D. K. 1992 A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A 4 (3), 633635.CrossRefGoogle Scholar
20. Mahesh, K., Constantinescu, G. & Moin, P. 2004 A numerical method for large eddy simulations in complex geometries. J. Comput. Phys. 197, 215240.CrossRefGoogle Scholar
21. Mittal, R., Kotapati, R. B. & Cattafesta, L. N. III 2005 Numerical study of resonant interactions and flow control in a canonical separated flow. In AIAA 43rd Aerospace Sciences Meeting and Exhibit, Reno, Nevada.CrossRefGoogle Scholar
22. Noack, B. R. & Eckelmann, H. 1994 A global stability analysis of the steady and periodic cylinder wake. J. Fluid Mech. 270, 297330.CrossRefGoogle Scholar
23. Noack, B. R., Schlegel, M., Ahlborn, B., Mutschke, G., Morzyński, M., Comte, P. & Tadmor, G. 2008 Finite time thermodynamics of unsteady fluid flows. J. Non-Equilib. Thermodyn. 33, 103148.Google Scholar
24. Orr, W. M. F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part 1: a perfect liquid; Part 2: a viscous liquid. Proc. R. Irish Acad. A 27, 968 and 69–138.Google Scholar
25. Perry, A. E. & Chong, M. S. 1987 A description of eddying motions and flow patterns using critical-point concepts. Annu. Rev. Fluid Mech. 19, 125155.CrossRefGoogle Scholar
26. Piomelli, U. & Chasnov, J. R. 1996 Large-eddy simulations: theory and applications. In Transition and Turbulence Modelling (ed. Hallbak, M., Henningson, D. S., Johansson, A. V. & Alfredson, P. H. ), pp. 269331. Kluwer.CrossRefGoogle Scholar
27. Pope, S. B. 2008 Turbulent Flows. Cambridge University Press.Google Scholar
28. Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanisms of an organised wave in turbulent shear flow. Part 3. Theoretical models and comparison with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
29. Roshko, A. 1954 On the development of turbulent wakes from vortex streets. NACA Tech. Rep. 1191.Google Scholar
30. Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.2.3.CO;2>CrossRefGoogle Scholar
31. Smith, D., Amitay, M., Kibens, V., Parekh, D. & Glezer, A. 1998 Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209.CrossRefGoogle Scholar
32. Sommerfeld, A. 1908 Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In Atti del IV. Congresso Internazionale dei Matematici III, pp. 116124. Rome.Google Scholar
33. Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12, 221233.CrossRefGoogle Scholar
34. Tian, Y. & Cattafesta, L. N. III 2006 Adaptive control of separated flow. AIAA Paper 2006-1401.CrossRefGoogle Scholar
35. Tuck, A. & Soria, J. 2008 Separation control on a NACA 0015 airfoil using a 2D micro ZNMF jet. Air. Engng Aero. Tech. 80 (2), 175180.CrossRefGoogle Scholar
36. You, D., Ham, F. & Moin, P. 2008 Discrete conservation principles in large-eddy simulation with application to separation control over an airfoil. Phys. Fluids 20 (101515), 111.CrossRefGoogle Scholar
37. Zhou, Y., Alam, M. M., Yang, H. X., Guo, H. & Wood, D. H. 2011 Fluid forces on a very low Reynolds number airfoil and their prediction. Intl J. Heat Fluid Flow 32, 329339.CrossRefGoogle Scholar