Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T22:00:04.609Z Has data issue: false hasContentIssue false

On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces

Published online by Cambridge University Press:  25 January 2011

GEORGE KARAPETSAS
Affiliation:
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
RICHARD V. CRASTER
Affiliation:
Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
OMAR K. MATAR*
Affiliation:
Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

The mechanisms driving the surfactant-enhanced spreading of droplets on the surface of solid substrates, and particularly those underlying the superspreading behaviour sometimes observed, are investigated theoretically. Lubrication theory for the droplet motion, together with advection–diffusion equations and chemical kinetic fluxes for the surfactant transport, leads to coupled evolution equations for the drop thickness, interfacial concentrations of surfactant monomers and bulk concentrations of monomers and micellar, or other, aggregates. The surfactant can be adsorbed on the substrate either directly from the bulk monomer concentrations or from the liquid–air interface through the contact line. An important feature of the spreading model developed here is the surfactant behaviour at the contact line; this is modelled using a constitutive relation, which is dependent on the local surfactant concentration. The evolution equations are solved numerically, using the finite-element method, and we present a thorough parametric analysis for cases of both insoluble and soluble surfactants with concentrations that can, in the latter case, exceed the critical micelle, or aggregate, concentration. The results show that basal adsorption of the surfactant plays a crucial role in the spreading process; the continuous removal of the surfactant that lies upon the liquid–air interface, due to the adsorption at the solid surface, is capable of inducing high Marangoni stresses, close to the droplet edge, driving very fast spreading. The droplet radius grows at a rate proportional to ta with a = 1 or even higher, which is close to the reported experimental values for superspreading. The spreading rates follow a non-monotonic variation with the initial surfactant concentration also in accordance with experimental observations. An accompanying feature is the formation of a rim at the leading edge of the droplet. In some cases, the drop spreads to form a ‘pancake’ or creates a ‘secondary’ front separated from the main droplet.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Beacham, D. R., Matar, O. K. & Craster, R. V. 2009 Surfactant-enhanced rapid spreading of drops on solid surfaces. Langmuir 25, 1417414181.CrossRefGoogle ScholarPubMed
Benintendi, S. W. & Smith, M. K. 1999 The spreading of a non-isothermal liquid droplet. Phys. Fluids 11, 982989.CrossRefGoogle Scholar
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.CrossRefGoogle Scholar
Carlson, A., Do-Quang, M. & Amberg, G. 2009 Modelling of dynamic wetting far from equilibrium. Phys. Fluids 21, 121701121704.CrossRefGoogle Scholar
Chan, K. Y. & Borhan, A. 2005 Surfactant-assisted spreading of a liquid drop on a smooth solid surface. J. Colloid Interface Sci. 287, 233248.CrossRefGoogle ScholarPubMed
Clay, M. A. & Miksis, M. J. 2004 Effects of surfactant on droplet spreading. Phys. Fluids. 16, 30703078.CrossRefGoogle Scholar
Cox, R. G. 1986 a The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Cox, R. G. 1986 b The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants. J. Fluid Mech. 168, 195220.CrossRefGoogle Scholar
Craster, R. V. & Matar, O. K. 2006 On the dynamics of liquid lenses. J. Colloid Interface Sci. 303, 503516.CrossRefGoogle ScholarPubMed
Craster, R. V. & Matar, O. K. 2007 On autophobing in surfactant-driven thin films. Langmuir 23, 25882601.CrossRefGoogle ScholarPubMed
Dussan, V. & Davis, S. H. 1974 On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65, 7195.CrossRefGoogle Scholar
Dussan, V., Rame, E. & Garoff, S. 1991 On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation. J. Fluid Mech. 230, 97116.CrossRefGoogle Scholar
Edmonstone, B. D., Craster, R. V. & Matar, O. K. 2006 Surfactant-induced fingering phenomena beyond the critical micelle concentration. J. Fluid Mech. 564, 105138.CrossRefGoogle Scholar
Edmonstone, B. D., Matar, O. K. & Craster, R. V. 2005 Surfactant-induced fingering phenomena in thin film flow down an inclined plane. Physica D 209, 6279.CrossRefGoogle Scholar
Ehrhard, P. 1993 Experiments on isothermal and non-isothermal spreading. J. Fluid Mech. 257, 463483.CrossRefGoogle Scholar
Ehrhard, P. & Davis, S. H. 1991 Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229, 365388CrossRefGoogle Scholar
Gaver, D. P. III & Grotberg, J. B. 1990 The dynamics of a localized surfactant on a thin film. J. Fluid Mech. 213, 127148.CrossRefGoogle Scholar
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.CrossRefGoogle Scholar
Greenspan, H. P. 1978 On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84 125143.CrossRefGoogle Scholar
Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529571.CrossRefGoogle Scholar
Haley, P. J. & Miksis, M. J. 1991 The effect of the contact line on droplet spreading. J. Fluid Mech. 223, 5781.CrossRefGoogle Scholar
Hill, R. M. 1998 Superspreading. Curr. Opin. Colloid Interface Sci. 3, 247254.CrossRefGoogle Scholar
Hill, R. M. 2002 Silicone surfactants-new developments. Curr. Opin. Colloid Interface Sci. 7, 255261.CrossRefGoogle Scholar
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.CrossRefGoogle Scholar
Hunter, R. J. 1991 Foundations of Colloid Science. Oxford University Press.Google Scholar
Jensen, O. E. & Grotberg, J. B. 1993 The spreading of heat or soluble surfactant along a thin film. Phys. Fluids A 5, 5868.CrossRefGoogle Scholar
Jensen, O. E. & Naire, S. 2006 The spreading and stability of a surfactant-laden drop on a prewetted substrate. J. Fluid Mech. 554, 524.CrossRefGoogle Scholar
Kataoka, D. E. & Troian, S. M. 1997 A theoretical study of instabilities at the advancing front of thermally driven coating films. J. Colloid Interface Sci. 192, 350362.CrossRefGoogle ScholarPubMed
Kim, H.-Y., Qin, Y. & Fichthorn, K. A. 2006 Molecular dynamics simulation of nanodroplet spreading enhanced by linear surfactants. J. Chem. Phys. 125, 174708.CrossRefGoogle ScholarPubMed
Knoche, M., Tamura, H. & Bukovac, J. 1991 Performance and stability of the organosilicone surfactant L-77: effect of pH, concentration, and temperature. J. Agric. Food Chem. 39, 202206.CrossRefGoogle Scholar
Kondic, L. & Diez, J. 2001 Pattern formation in the flow of thin films down an incline: constant flux configuration. Phys. Fluids 13, 31683184.CrossRefGoogle Scholar
Kumar, N., Couzis, A. & Maldarelli, C. 2003 Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading. J. Colloid Interface Sci. 267, 272285.CrossRefGoogle Scholar
Navier, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluides. Acad. R. Sci. Inst. Fr. 6, 389440.Google Scholar
Nikolov, A. D., Wasan, D. T., Chengara, A., Koczo, K., Policello, G. A. & Kolossvary, I. 2002 Superspreading driven by Marangoni flow. Adv. Colloid Interface Sci. 96, 325338.CrossRefGoogle ScholarPubMed
Radulovic, J., Sefiane, K. & Shanahan, M. E. R. 2009 Spreading and wetting behaviour of trisiloxanes. J. Bionic Engng 6, 341349.CrossRefGoogle Scholar
Rafai, S., Sarker, D., Bergeron, V., Meunier, J. & Bonn, D. 2002 Superspreading: aqueous surfactant drops spreading on hydrophobic surfaces. Langmuir 18, 1048610488.CrossRefGoogle Scholar
Rame, E. 2001 The spreading of surfactant-laden liquids with surfactant transfer through the contact line. J. Fluid Mech. 440, 205234.CrossRefGoogle Scholar
Schwartz, L. W. & Eley, R. R. 1998 Simulation of droplet motion on low-energy and heterogeneous surfaces. J. Colloid Interface Sci. 202, 173188.CrossRefGoogle Scholar
Sheludko, A. 1967 Thin liquid films. Adv. Colloid Interface Sci. 1, 391464.CrossRefGoogle Scholar
Spaid, M. A. & Homsy, G. M. 1996 Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8, 460478.CrossRefGoogle Scholar
Stoebe, T., Hill, R. M., Ward, M. D. & Davis, H. T. 1997 a Enhanced spreading of aqueous films containing ionic surfactants on solid substrates. Langmuir 13, 72767281.CrossRefGoogle Scholar
Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D. & Davis, H. T. 1996 Surfactant-enhanced spreading. Langmuir 12, 337344.CrossRefGoogle Scholar
Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D. & Davis, H. T. 1997 b Enhanced spreading of aqueous films containing ethoxylated alcohol surfactants on solid substrates. Langmuir 13, 72707275.CrossRefGoogle Scholar
Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D. & Davis, H. T. 1997 c Superspreading of aqueous films containing trisiloxane surfactant on solid substrates. Langmuir 13, 72827286.CrossRefGoogle Scholar
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12, 14731484.CrossRefGoogle Scholar
Warner, M. R. E., Craster, R. V. & Matar, O. K. 2004 a Fingering phenomena created by a soluble surfactant deposition on a thin liquid film. Phys. Fluids 16, 29332951.CrossRefGoogle Scholar
Warner, M. R. E., Craster, R. V. & Matar, O. K. 2004 b Fingering phenomena associated with surfactant spreading on thin liquid films. J. Fluid Mech. 510, 169200.CrossRefGoogle Scholar
Zhu, S. Miller, W. G., Scriven, L. E. & Davis, H. T. 1994 Superspreading of water–silicone surfactant on hydrophobic surfaces. Colloids Surf. A 90, 6378.CrossRefGoogle Scholar