Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T21:54:34.606Z Has data issue: false hasContentIssue false

On spatially growing disturbances in an inviscid shear layer

Published online by Cambridge University Press:  28 March 2006

A. Michalke
Affiliation:
Deutsche Versuchsanstalt für Luft- und Raumfahrt e.V., Institut für Turbulenzforschung, Berlin

Abstract

Experimental investigations of shear layer instability have shown that some obviously essential features of the instability properties cannot be described by the inviscid linearized stability theory of temporally growing disturbances. Therefore an attempt is made to obtain better agreement with experimental results by means of the inviscid linearized stability theory of spatially growing disturbances. Thus using the hyperbolic-tangent velocity profile the eigenvalues and eigenfunctions were computed numerically for complex wave-numbers and real frequencies. The results so obtained showed the tendency expected from the experiments. The physical properties of the disturbed flow are discussed by means of the computed vorticity distribution and the computed streaklines. It is found that the disturbed shear layer rolls up in a complicated manner. Furthermore, the validity of the linearized theory is estimated. The result is that the error due to the linearization of the disturbance equation should be larger for the vorticity distribution than for the velocity distribution, and larger for higher disturbance frequencies than for lower ones. Finally, it can be concluded from the comparison between the results of experiments and of both the spatial and temporal theory by Freymuth that the theory of spatially-growing disturbances describes the instability properties of a disturbed shear layer more precisely, at least for small frequencies.

Type
Research Article
Copyright
© 1965 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Betchov, R. & Szewczyk, A. 1963 Phys. Fluids, 6, 13916.
Esch, R. E. 1957 J. Fluid Mech. 3, 289303.
Fabian, H. 1960 Deutsche Versuchsanstalt f. Luftfahrt, Porz-Wahn, DVL-Rep. no. 122.
Freymuth, P. 1965 Diss. Technische Universität Berlin. (To be published.)
Gaster, M. 1962 J. Fluid Mech. 14, 2224.
Gaster, M. 1965 Progr. Aero. Sci. 6, 25170.
Gill, A. E. 1965 J. Fluid Mech. 21, 14572.
Hama, F. R. 1962 Phys. Fluids, 5, 64450.
Leite, R. J. 1956 Univ. Michigan Engng Coll. Rep. IP-188.
Lessen, M. 1950 Nat. Adv. Comm. Aero., Wash., Tech. Rep. no. 979.
Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.
Lin, C. C. 1958 Boundary Layer Research (ed. H. Görtler), pp. 14457. Berlin-Göttingen-Heidelberg: Springer-Verlag.
Michalke, A. 1964 J. Fluid Mech. 19, 54356.
Michalke, A. 1965 J. Fluid Mech. 22, 37183.
Michalke, A. & Schade, H. 1963 Ing. Arch. 33, 123.
Michalke, A. & Wehrmann, O. 1964 Proc. Intern. Counc. Aero. Sci. 3rd Congr., Stockholm, 1962, pp. 77385.
Michalke, A. & Wille, R. 1965 Proc. 11th Intern. Congr. Appl. Mech., Munich, 1964.
Rayleigh, Lord 1880 Sci. Papers, 1, pp. 47487. Cambridge University Press.
Sato, H. 1956 J. Phus. Soc. Japan, 11, 7029.
Sato, H. 1959 J. Phus. Soc. Japan, 14, 17971810.
Sato, H. 1960 J. Fluid Mech. 7, 5380.
Schade, H. & Michalke, A. 1962 Z. Flugwiss. 10, 14754. (also AFOSR Tech. Note no. 3191).
Schubauer, G. B. & Skramstad, H. K. 1947 Nat. Bur. Stand. Res. Paper RP-1772.
Tatsumi, T. & Kakutani, T. 1958 J. Fluid Mech. 4, 26175.
Watson, J. 1962 J. Fluid Mech. 14, 21121.
Wehrmann, O. 1960 Deutsche Versuchsanstalt f. Luftfahrt, Porz-Wahn, DVL-Rep. no. 131.
Wehrmann, O. & Wille, R. 1958 Boundary Layer Research (ed. H. Görtler), pp. 387404. Berlin-Göttingen-Heidelberg: Springer-Verlag.
Wille, R. 1963 Z. Flugwiss. 11, 22233.