Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-17T11:23:07.477Z Has data issue: false hasContentIssue false

On natural modes in moonpools and gaps in finite depth

Published online by Cambridge University Press:  14 February 2018

B. Molin*
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France Bureau Veritas Marine and Offshore SAS, CS 50101, 92937 Paris La Défense CEDEX, France Department of Marine Technology, Norwegian University of Science and Technology NTNU, 7491 Trondheim, Norway
X. Zhang
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
H. Huang
Affiliation:
State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
F. Remy
Affiliation:
Aix-Marseille Université, CNRS, Centrale Marseille, IRPHE, 13013 Marseille, France
*
Email address for correspondence: [email protected]

Abstract

In this paper an extension of the theoretical model of Molin (J. Fluid Mech., vol. 430, 2001, pp. 27–50) is proposed, where the assumptions of infinite depth and infinite horizontal extent of the support are released. The fluid domain is decomposed into two subdomains: the moonpool (or the gap) and a lower subdomain bounded by the seafloor and by an outer cylinder where the linearized velocity potential is assumed to be nil. Eigenfunction expansions are used to describe the velocity potential in both subdomains. Garrett’s method is then applied to match the velocity potentials at the common boundary and an eigenvalue problem is formulated and solved, yielding the natural frequencies and associated modal shapes of the free surface. Applications are made, first in the case of a circular moonpool, then in the rectangular gap and moonpool cases. Based on so-called single-mode approximations, simple formulas are proposed that give the resonant frequencies.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Faltinsen, O. M., Rognebakke, O. F. & Timokha, A. N. 2007 Two-dimensional resonant piston-like sloshing in a moonpool. J. Fluid Mech. 575, 359397.CrossRefGoogle Scholar
Faltinsen, O. M. & Timokha, A. N. 2015 On damping of two-dimensional piston-mode sloshing in a rectangular moonpool under forced heave motions. J. Fluid Mech. 772, R1.CrossRefGoogle Scholar
Garrett, C. J. R. 1971 Wave forces on a circular dock. J. Fluid Mech. 46, 129139.Google Scholar
Guignier, L., Courbois, A., Mariani, R. & Choisnet, T. 2016 Multibody modelling of floating offshore wind turbine foundation for global loads analysis. In Proceedings of the Twenty-sixth (2016) International Ocean and Polar Engineering Conference, Rhodes.Google Scholar
Linton, C. M. & McIver, P. 2001 Handbook of Mathematical Techniques for Wave/Structure Interactions. Chapman & Hall/CC.Google Scholar
Maisondieu, C. & Le Boulluec, M. 2001a Flow dynamics in a moon-pool. Experimental and numerical assessment. In Proceedings of OMAE’01 20th International Conference on Offshore Mechanics and Arctic Engineering, Rio de Janeiro.Google Scholar
Maisondieu, C., Molin, B., Kimmoun, O. & Gentaz, L.2001b Simulation bidimensionnelle des écoulements dans une baie de forage. Etude des modes de résonance et des amortissements, in Actes des Huitièmes Journées de l’Hydrodynamique, Nantes (http://website.ec-nantes.fr/actesjh/, in French).Google Scholar
Molin, B. 2001 On the piston and sloshing modes in moonpools. J. Fluid Mech. 430, 2750.Google Scholar
Molin, B., Guérin, P., Martigny, D. & Weber, P.1999 Etude théorique et expérimentale des efforts hydrodynamiques sur une embase plane à l’approche du fond marin, in Actes des Septièmes Journées de l’Hydrodynamique, Marseille (http://website.ec-nantes.fr/actesjh/, in French).Google Scholar
Molin, B., Remy, F., Camhi, A. & Ledoux, A. 2009 Experimental and numerical study of the gap resonances in-between two rectangular barges. In Proceedings of the 13th Congress of the International Maritime Association of the Mediterranean (IMAM), Istanbul.Google Scholar
Molin, B., Remy, F., Kimmoun, O. & Stassen, Y. 2002 Experimental study of the wave propagation and decay in a channel through a rigid ice-sheet. Appl. Ocean Res. 24, 247260.Google Scholar
Newman, J. N. & Sclavounos, P. D. 1988 The computation of wave loads on large offshore structures. In Proceedings of the International Conference on Behaviour of Offshore Structures, vol. 2, pp. 605619. BOSS88.Google Scholar
Newman, J. N., Sortland, B. & Vinje, T. 1984 Added mass and damping of rectangular bodies close to the free surface. J. Ship Res. 28, 219225.CrossRefGoogle Scholar
Sun, L., Eatock Taylor, R. & Taylor, P. H. 2010 First- and second-order analysis of resonant waves between adjacent barges. J. Fluids Struct. 26, 954978.CrossRefGoogle Scholar
WAMIT, Inc.2016 User Manual for WAMIT Version 7.2, www.wamit.com/manual.htm.Google Scholar
Yoo, S. O., Kim, H. J., Lee, D. Y., Kim, B. & Yang, S. H. 2017 Experimental and numerical study on the flow reduction in the moonpool of floating offsore structures 2017. In Proceedings of the ASME 2017 36th International Conference on Ocean, Offshore and Arctic Engineering, OMAE 2017 Trondheim, Norway.Google Scholar
Zhao, W., Wolgamot, H. A., Taylor, P. H. & Eatock Taylor, R. 2017 Gap resonance and higher harmonics driven by focused transient wave groups. J. Fluid Mech. 812, 905939.CrossRefGoogle Scholar