Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T22:01:56.062Z Has data issue: false hasContentIssue false

On Markov modelling of turbulence

Published online by Cambridge University Press:  26 April 2006

Gianni Pedrizzetti
Affiliation:
Dipartimento di Ingegneria Civile, Università di Firenze, via S. Marta 3, 50139 Firenze, Italy
Evgeny A. Novikov
Affiliation:
Institute for Nonlinear Science, University of California San Diego, CA 92093–0402, USAand Center for Turbulent Research, Stanford University, Stanford, CA 95305–3030, USA

Abstract

We consider Lagrangian stochastic modelling of the relative motion of two fluid particles in the inertial range of a turbulent flow. Eulerian analysis of such modelling corresponds to an equation for the Eulerian probability distribution of velocity-vector increments which introduces a hierarchy of constraints for making the model consistent with results from the theory of locally isotropic turbulence. A nonlinear Markov process is presented, which is able to satisfy exactly, in the statistical sense, incompressibility, the exact results on the third-order structure function, and the experimental second-order statistics. The corresponding equation for the Eulerian probability density of velocity-vector increments is solved numerically. Numerical results show non-Gaussian statistics of the one-dimensional Lagrangian probability distributions, and a complex shape of the three-dimensional Eulerian probability density function. The latter is then compared with existing experimental data.

Type
Research Article
Copyright
© 1994 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chhabra, A. B. & Sreenivasan, K. R. 1992 Scale-invariant multiplier distributions in turbulence. Phys. Rev. Lett. 68, 2762.Google Scholar
Dop, H. Van, Nieuwstad, F. T. M. & Hunt, J. C. R. 1985 Random walk models for particle displacements in inhomogeneous turbulent flows. Phys. Fluids 28, 1639.Google Scholar
Durbin, P. A. 1980 A stochastic model of two-particle dispersion and concentration fluctuation in homogeneous turbulence. J. Fluid Mech. 100, 279.Google Scholar
Durbin, P. A. 1983 Stochastic differential equations and turbulent dispersion. NASA Reference Publication 1103.
Fung, J. C. H., Hunt, J. C. R., Malik, N. A. & Perkins, R. J. 1992 Kinematic simulation of homogeneous turbulence by unsteady random Fourier modes. J. Fluid Mech. 236, 281.Google Scholar
Gagne, Y., Hopfinger, E. J. & Frish, U. 1988 A new universal scaling for fully developed turbulence: the distribution of velocity increments. In New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena: The Geometry of Nonequilibrium (ed. P. Coullet & P. Huerre). NATO ASI Series B, vol. 237, p. 315. Plenum.
Gifford, F. G. 1959 Statistical properties of a fluctuating plume. Adv. Geophys. 6, 117.Google Scholar
Jimenez, J., Wray, A., Saffman, P. G. & Rogallo, R. S. 1993 The structure of intense vorticity in homogeneous turbulence. J. Fluid Mech. 255, 65.Google Scholar
Kailasnath, P., Sreenivasan, K. R. & Stolovitzky, G. 1992 Probability distribution of velocity increments in turbulent flows. Phys. Rev. Lett. 68, 2766.Google Scholar
Kampen, N. G. Van 1981 Stochastic Processes in Physics and Chemistry. North-Holland.
Kolmogorov, A. N. 1941a The local structure of turbulence in an incompressible viscous fluid for very high Reynolds number. Dokl. Akad. Nauk. SSSR 30, 301.Google Scholar
Kolmogorov, A. N. 1941b Dissipation of energy in the locally isotropic turbulence. Dokl. Akad. Nauk. SSSR 32, 16.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13, 82.Google Scholar
Meijerink, J. A. & Vorst, H. A. Van Der 1981 Guidelines for the usage of incomplete decompositions in solving sets of linear equations as they occur in practical problems. J. Comput. Phys. 44, 134.Google Scholar
Meneveau, C. & Sreenivasan, K. R. 1987 Simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424.Google Scholar
Milshtein, G. N. 1974 Approximation calculation of stochastic differential equations. Theory Prob. Appl. 19, 557.Google Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics I. MIT Press.
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics II. MIT Press.
Novikov, E. A. 1964 Functionals and random force method in turbulence theory. Sov. Phys. JETP 20, 1290.Google Scholar
Novikov, E. A. 1966 Relative diffusion of liquid particles in a turbulent shear flow. Izv. Atmos. Ocean Phys. 2 (11), 736.Google Scholar
Novikov, E. A. 1969a Scale similarity for random fields. Sov. Phys. Dokl. 14, 104.Google Scholar
Novikov, E. A. 1969b Relation between the Lagrangian and Eulerian description of turbulence. Appl. Math. Mech. 33, 862.Google Scholar
Novikov, E. A. 1971 Intermittency and scale similarity in the structure of turbulent flow. Appl. Math. Mech. 35, 231.Google Scholar
Novikov, E. A. 1986 The Lagrangian-Eulerian probability relations and the random force method for nonhomogeneous turbulence. Phys. Fluids 29, 3907.Google Scholar
Novikov, E. A. 1989 Two-particle description of turbulence, Markov property, and intermittency. Phys. Fluids A 1, 326.Google Scholar
Novikov, E. A. 1990 The effect of intermittency on statistical characteristics of turbulence and scale similarity of breakdown coefficients. Phys. Fluids A 2, 814.Google Scholar
Novikov, E. A. 1991 Solutions of exact kinetic equations for intermittent turbulence. In Proc. Monte Verità Colloquium on Turbulence (ed. T. Dracos & A. Tsinober). Birkauser.
Novikov, E. A. 1992 Probability distribution for three-dimensional vectors of velocity increments in turbulent flow. Phys. Rev. A 46, 6147.Google Scholar
Novikov, E. A. 1993 A new approach to the problem of turbulence based on the conditional averaged Navier-Stokes equations. Fluid Dyn. Res. 12, 107.Google Scholar
Pardoux, E. & Talay, D. 1985 Discretization and simulation of stochastic differential equations. Acta Appl. Maths 3, 23.Google Scholar
Praskovsky, A. A. 1992b Probability density distribution of velocity differences at high Reynolds number. An. Res. CTR, 27.Google Scholar
Praskovsky, A. A. 1992b Experimental verification of the Kolmogorov refined similarity hypothesis. Phys. Fluids A 4, 2589.Google Scholar
Saito, Y. 1992 Log-gamma distribution model of intermittency in turbulence. J. Phys. Soc. Japan 61, 403.Google Scholar
Sawford, E. A. 1986 Generalized random forcing in random walk turbulent dispersion models. Phys. Fluids 29, 3582.Google Scholar
Sawford, E. A. & Hunt, J. C. R. 1986 Effect of turbulence structure, molecular diffusion and source size on scalar fluctuations in homogeneous turbulence. J. Fluid Mech. 165, 373.Google Scholar
Tatarski, V. I. 1960 Radiophysical methods of investigating atmospheric turbulence. Izv. Vyssh. Uchebn. Zaved. 3 Radiofizika 4, 551.Google Scholar
Thomson, D. J. 1986 On the relative dispersion of two particles in homogeneous stationary turbulence and the implication for the size of concentration fluctuations at large times. Q. J. R. Met. Soc. 112, 890.Google Scholar
Thomson, D. J. 1987 Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529.Google Scholar
Thomson, D. J. 1990 A stochastic model for the motion of particle pair in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 210, 113.Google Scholar
Thoroddsen, S. T. & Van Atta, C. W. 1992 Experimental evidence supporting Kolmogorov refined similarity hypothesis. Phys. Fluids A 4, 2592.Google Scholar
Vincent, A. & Meneguzzi, M. 1991 The spatial structure and statistical properties of homogeneous turbulence. J. Fluid Mech. 225, 1.Google Scholar
Vorst, H. A. Van Der 1992 BiCGSTAB – A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13, 631.Google Scholar