Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-08T11:26:07.508Z Has data issue: false hasContentIssue false

On linear instability mechanisms in incompressible open cavity flow

Published online by Cambridge University Press:  04 July 2014

F. Meseguer-Garrido*
Affiliation:
School of Aerospace Engineering, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain
J. de Vicente
Affiliation:
School of Aerospace Engineering, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain
E. Valero
Affiliation:
School of Aerospace Engineering, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain
V. Theofilis
Affiliation:
School of Aerospace Engineering, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, E-28040 Madrid, Spain
*
Email address for correspondence: [email protected]

Abstract

A theoretical study of linear global instability of incompressible flow over a rectangular spanwise-periodic open cavity in an unconfined domain is presented. Comparisons with the limited number of results available in the literature are shown. Subsequently, the parameter space is scanned in a systematic manner, varying Reynolds number, incoming boundary-layer thickness and length-to-depth aspect ratio. This permits documenting the neutral curves and leading eigenmode characteristics of this flow. Correlations constructed using the results obtained collapse all available theoretical data on the three-dimensional instabilities.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albensoeder, S., Kuhlmann, H. C. & Rath, H. J. 2001 Three-dimensional centrifugal-flow instabilities in the lid-driven-cavity problem. Phys. Fluids 13 (1), 121135.CrossRefGoogle Scholar
Alizard, F., Robinet, J. C. & Gloerfelt, X. 2012 A domain decomposition matrix-free method for global linear stability. Comput. Fluids 66, 6384.CrossRefGoogle Scholar
Barbagallo, A., Sipp, D. & Schmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced-order models. J. Fluid Mech. 641, 150.CrossRefGoogle Scholar
Basley, J., Pastur, L. R., Delprat, N. & Lusseyran, F. 2013 Space–time aspects of a three-dimensional multi-modulated open cavity flow. Phys. Fluids 25, 064105.CrossRefGoogle Scholar
Basley, J., Pastur, L. R., Lusseyran, F., Faure, T. M. & Delprat, N. 2011 Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV. Exp. Fluids 50 (4), 905918.CrossRefGoogle Scholar
Brès, G. A.2007 Numerical simulations of three-dimensional instabilities in cavity flows. PhD thesis, California Institute of Technology.CrossRefGoogle Scholar
Brès, G. A. & Colonius, T. 2008 Three-dimensional instabilities in compressible flow over open cavities. J. Fluid Mech. 599, 309339.CrossRefGoogle Scholar
Cattafesta III, L. N., Garg, S., Kegerise, M. S. & Jones, G. S.1998 Experiments on compressible flow-induced cavity oscillations. AIAA Paper 98-2912.CrossRefGoogle Scholar
Colonius, T., Rowley, C. W. & Theofilis, V. 2001 Global instabilities and reduced-order models of cavity flow oscillations. In First Symposium on Global Flow Instability and Control (ed. Theofilis, V., Colonius, T. & Seifert, A.), 23–25 September 2001, Creta Maris, Hersonissos, Greece .Google Scholar
Faure, T. M., Pastur, L. R., Lusseyran, F., Fraigneau, Y. & Bisch, D. 2009 Three-dimensional centrifugal instabilities development inside a parallelepipedic open cavity of various shape. Exp. Fluids 47 (3), 395410.CrossRefGoogle Scholar
Gharib, M. & Roshko, A. 1987 The effect of flow oscillations on cavity drag. J. Fluid Mech. 177, 501530.CrossRefGoogle Scholar
Gómez, F. J.2013 Matrix-free time-stepping methods for the solution of triglobal instability problems. PhD thesis, Universidad Politécnica de Madrid.Google Scholar
Gómez, F., Gómez, R. & Theofilis, V. 2014 On three-dimensional global linear instability analysis of flows with standard aerodynamics codes. Aerosp. Sci. Technol. 32 (1), 223234.CrossRefGoogle Scholar
Gómez, F., Le Clainche, S., Paredes, P., Hermanns, M. & Theofilis, V. 2012 Four decades of studying global linear instability: progress and challenges. AIAA J. 50, 27312743.CrossRefGoogle Scholar
González, L. M., Ahmed, M., Kuhnen, J., Kuhlmann, H. C. & Theofilis, V. 2011 Three-dimensional flow instability in a lid-driven isosceles triangular cavity. J. Fluid Mech. 675, 369396.CrossRefGoogle Scholar
Gresho, P. M. & Sani, R. L. 1987 On pressure boundary conditions for the incompressible Navier–Stokes equations. Intl J. Numer. Meth. Fluids 7 (10), 11111145.CrossRefGoogle Scholar
Kegerise, M. A., Spina, E. F., Garg, S. & Cattafesta III, L. N. 2004 Mode-switching and nonlinear effects in compressible flow over a cavity. Phys. Fluids 16, 678687.CrossRefGoogle Scholar
Koseff, J. R. & Street, R. L. 1984 On endwall effects in a lid-driven cavity flow. Trans. ASME: J. Fluids Engng 106, 385389.Google Scholar
Neary, M. D. & Stephanoff, K. D. 1987 Shear-layer-driven transition in a rectangular cavity. Phys. Fluids 30 (10), 29362946.CrossRefGoogle Scholar
Pereira, J. C. F. & Sousa, J. M. M. 1995 Experimental and numerical investigation of flow oscillations in a rectangular cavity. Trans. ASME: J. Fluids Engng 117 (1), 6874.Google Scholar
Rockwell, D. 1977 Prediction of oscillation frequencies for unstable flow past cavities. Trans. ASME: J. Fluids Engng 99, 294300.Google Scholar
Rockwell, D. & Knisely, C. 1980 Observations of the three-dimensional nature of unstable flow past a cavity. Phys. Fluids 23, 425431.CrossRefGoogle Scholar
Rockwell, D. & Knisely, C. 1987 The organized nature of flow impingement upon a corner. J. Fluid Mech. 93, 413432.CrossRefGoogle Scholar
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillations of impinging free shear layers. Annu. Rev. Fluid Mech. 11, 6794.CrossRefGoogle Scholar
Rossiter, J. E.1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronaut. Res. Counc. R. & M. 3438.Google Scholar
Rowley, C., Colonius, T. & Basu, A. 2002 On self-sustained oscillations in two-dimensional compressible flow over rectangular cavities. J. Fluid Mech. 455, 315346.CrossRefGoogle Scholar
Sani, R. L. & Gresho, P. M. 1994 Résumé and remarks on the open boundary condition minisymposium. Intl J. Numer. Meth. Fluids 18 (10), 9831008.CrossRefGoogle Scholar
Sarohia, V.1975 Experimental and analytical investigation of oscillations in flows over cavities. PhD thesis, California Institute of Technology.CrossRefGoogle Scholar
Sipp, D. 2012 Open-loop control of cavity oscillations with harmonic forcings. J. Fluid Mech. 708, 439468.CrossRefGoogle Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.CrossRefGoogle Scholar
Theofilis, V.2000a Globally unstable basic flows in open cavities. Maui, HI: AIAA Paper 2000-1965.Google Scholar
Theofilis, V. 2000b On steady-state flow solutions and their non-parallel global linear instability. In Eighth European Turbulence Conference (ed. Dopazo, C.), 27–30 June 2000, Barcelona, Spain , pp. 3538.Google Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.CrossRefGoogle Scholar
Theofilis, V. & Colonius, T.2003 An algorithm for the recovery of 2- and 3-d biglobal instabilities of compressible flow over 2-d open cavities. In AIAA Paper 2003-4143.CrossRefGoogle Scholar
Theofilis, V. & Colonius, T.2004 Three-dimensional instablities of compressible flow over open cavities: direct solution of the biglobal eigenvalue problem. AIAA Paper 2006-2877.CrossRefGoogle Scholar
de Vicente, J.2010 Spectral multi-domain method for the global instability analysis of complex cavity flows. PhD thesis, Universidad Politécnica de Madrid.Google Scholar
de Vicente, J., Basley, J., Theofilis, V., Soria, J. & Meseguer-Garrido, F. 2014 Three-dimensional instabilities over a rectangular open cavity: from linear analysis to experimentation. J. Fluid Mech. 748, 189220.CrossRefGoogle Scholar
de Vicente, J., Valero, E., González, L. M. & Theofilis, V.2004 Spectral multi-domain methods for biglobal instability analysis of complex flows over open cavity configurations. AIAA Paper 2004-2544.Google Scholar
Yamouni, S., Sipp, D. & Jacquin, L. 2013 Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis. J. Fluid Mech. 717, 134165.CrossRefGoogle Scholar