Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-07T18:39:42.491Z Has data issue: false hasContentIssue false

On Kolmogorov's inertial-range theories

Published online by Cambridge University Press:  29 March 2006

Robert H. Kraichnan
Affiliation:
Dublin, New Hampshire

Abstract

Consistency and uniqueness questions raised by both the 1941 and 1962 Kolmogorov inertial-range theories are examined. The 1941 theory, although unlikely from the viewpoint of vortex-stretching physics, is not ruled out just because the dissipation fluctuates; but self-consistency requires that dissipation fluctuations be confined to dissipation-range scales by a spacewise mixing mechanism. The basic idea of the 1962 theory is a self-similar cascade mechanism which produces systematically increasing intermittency with a decrease of scale size. This concept in itself requires neither the third Kolmogorov hypothesis (log-normality of locally averaged dissipation) nor the first hypothesis (universality of small-scale statistics as functions of scale-size ratios and locally averaged dissipation). It does not even imply that the inertial range exhibits power laws. A central role for dissipation seems arbitrary since conservation alone yields no simple relation between the local dissipation rate and the corresponding proper inertial-range quantity: the local rate of energy transfer. A model rate equation for the evolution of probability densities is used to illustrate that even scalar nonlinear cascade processes need not yield asymptotic log-normality. The approximate experimental support for Kolmogorov's hypothesis takes on added significance in view of the wide variety of a priori admissible alternatives.

If the Kolmogorov law $E(k) \propto k^{-\frac{5}{3}-\mu}$ is asymptotically valid, it is argued that the value of μ depends on the details of the nonlinear interaction embodied in the Navier–Stokes equation and cannot be deduced from overall symmetries, invariances and dimensionality. A dynamical equation is exhibited which has the same essential invariances, symmetries, dimensionality and equilibrium statistical ensembles as the Navier–Stokes equation but which has radically different inertial-range behaviour.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1952 Proc. Roy. Soc. A 213, 349
Batchelor, G. K. 1953 Theory of Homogeneous Turbulence. Cambridge University Press.
Batchelor, G. K. 1959 J. Fluid Mech. 5, 113.
Batchelor, G. K. & Townsend, A. A. 1949 Proc. Roy. Soc. A, 199, 238.
Cocke, W. J. 1969 Phys. Fluids, 12, 2488.
Cocke, W. J. 1971 Phys. Fluids, 14, 1624
Corrsin, S. 1962 Phys. Fluids, 5, 1301.
Dutton, J. A. & Deaven, D. G. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 352383, Springer.
Frenkiel, F. & Klebanoff, P. 1971 J. Fluid Mech. 48, 183.
Gibson, C. H. & Masiello, P. J. 1972 Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 427453, Springer.
Gibson, C. H., Stegun, G. R. & McConnell, S. 1970 Phys. Fluids, 13, 2448.
Gibson, G. H., Stegun, G. R. & Williams, R. B. 1970 J. Fluid Mech. 41, 153.
Grant, H. L. & Molliet, A. 1962 J. Fluid Mech. 13, 237.
Grant, H. L., Stewart, R. W. & Moilliet, A. 1962 J. Fluid Mech. 12, 241.
Gurvich, A. S. & Yaglom, A. M. 1967 Phys. Fluids, 10, S59.
Gurvich, A. S. & Zublowskii, S. L. 1963 Izv. Geophys. Ser. 12, 1856.
Imamura, T., Meecham, W. C. & Siegel, A. 1965 J. Math. Phys. 6, 95.
Kolmogorov, A. N. 1941 C.R. Acad. Sci. U.S.S.R. 30, 301, 538.
Kolmogorov, A. N. 1962 J. Fluid Mech. 13, 82.
Kraichnan, R. H. 1959 J. Fluid Mech. 5, 497.
Kraichnan, R. H. 1964 Phys. Fluids, 7, 1723.
Kraichnan, R. H. 1967 Phys. Fluids, 10, 2081.
Kraichnan, R. H. 1973 J. Fluid Mech. 59, 745.
Kuo, A. Y.-S. & Corrsin, S. 1971 J. Fluid Mech. 50, 285.
Kuo, A. Y.-S. & Corrsin, S. 1972 J. Fluid Mech. 56, 447.
Landau, L. D. & Lifshitz, E. M. 1959 Fluid Mechanics, p. 126. Addison-Wesley.
Lee, T. D. 1952 Quart. J. Appl. Math. 10, 69.
Lumley, J. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 126. Springer.
Mandelbrot, B. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 333351. Springer.
Monin, A. S. 1967 Phys. Fluids, 10, S31.
Nelkin, M. 1973 Phys. Rev. Lett. 30, 1028.
Novikov, E. A. 1971 Prikl. Math. Mech. 35, 266.
Novikov, E. A. & Stewart, R. W. 1964 Izv. Akad. Nauk SSSR Ser. Geophys. no. 3.
Oboukhov, A. M. 1962 J. Fluid Mech. 13, 77.
Orszag, S. A. 1966 Plasma Phys. Lab., Princeton University Rep. PPLAF-13.
Orszag, S. A. 1970 Phys. Fluids, 13, 2203.
Pond, S. & Stewart, R. W. 1965 Izv. Atmos. & Oceanic Phys. 1, 914.
Pond, S., Stewart, R. W. & Burling, R. W. 1963 J. Atmos. Sci. 20, 319.
Rosenblatt, M. 1972 In Statistical Models and Turbulence (ed. by M. Rosenblatt & C. Van Atta), pp. 2740. Springer.
Saffman, P. 1968 In Topics in Nonlinear Physics (ed. N. Zabusky). Springer.
Saffman, P. 1970 Phys. Fluids, 13, 2193.
Sheih, C. M., Tennekes, H. & Lumley, J. L. 1971 Phys. Fluids, 14, 201.
Stewart, R. W., Wilson, J. R. & Burling, R. W. 1970 J. Fluid Mech. 41, 141.
Tennekes, H. 1968 Phys. Fluids, 11, 669.
Tennekes, H. & Wyngaard, J. C. 1972 J. Fluid Mech. 55, 93.
Townsend, A. A. 1951 Proc. Roy. Soc. A, 208, 534.
Van Atta, C. W. & Park, J. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 402426. Springer.
Wyngaard, J. C. & Pao, Y. H. 1972 In Statistical Models and Turbulence (ed. M. Rosenblatt & C. Van Atta), pp. 384401. Springer.
Wyngaard, J. C. & Tennekes, H. 1970 Phys. Fluids, 13, 1962.
Yaglom, A. M. 1966 Dokl. Akad. Nauk SSSR, 166, 49.