Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:15:45.521Z Has data issue: false hasContentIssue false

On finite-amplitude patterns of convection in a rectangular-planform container

Published online by Cambridge University Press:  26 April 2006

P. G. Daniels
Affiliation:
Department of Mathematics, City University, Northampton Square, London EC1V OHB, UK
M. Weinstein
Affiliation:
Raphael, PO Box 2250, Haifa 31021, Israel

Abstract

This paper considers the development of finite-amplitude patterns of convection in rectangular-planform containers. The horizontal dimensions of the container are assumed to be large compared with the critical wavelength of the motion. An interaction between rolls parallel and perpendicular to the lateral boundaries is modelled by a coupled pair of nonlinear amplitude equations together with appropriate conditions on the four lateral boundaries. At Rayleigh numbers above a critical value a steady-state solution is established with rolls parallel to the shorter lateral sides, consistent with the predictions of linear theory. At a second critical value this solution becomes unstable to cross-rolls near the shorter sides and a new steady state evolves. This consists of the primary roll pattern together with regions near the shorter sides where there is a combination of rolls parallel and perpendicular to the boundary.

Analytical and numerical methods are used to describe both the evolution and steady-state structure of the solution, and a comparison is made with the results of full numerical simulations and experiments.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. & Stegun, I. A. 1965 Handbook of Mathematical Functions Dover.
Brown, S. N. & Stewartson, K. 1977 Stud. Appl. Maths 57, 187.
Chen, M. M. & Whitehead, J. A. 1968 J. Fluid Mech. 31, 1.
Cross, M. C. 1980 Phys. Fluids 23, 1727.
Cross, M. C., Daniels, P. G., Hohenberg, P. C. & Siggia, E. D. 1983 J. Fluid Mech. 127, 155.
Daniels, P. G. 1977 Proc. R. Soc. Lond. A 358, 173.
Daniels, P. G. 1978 Mathematika 25, 216.
Daniels, P. G. & Ong, C. F. 1990 J. Fluid Mech. 215, 503.
Daniels, P. G. & Weinstein, M. 1992 Q. J. Mech. Appl. Maths 45, 315.
Davis, S. H. 1967 J. Fluid Mech. 30, 465.
Edwards, B. F. 1988 J. Fluid Mech. 191, 583.
Gollub, J. P., McCarriar, A. R. & Steinman, J. F. 1982 J. Fluid Mech. 125, 259.
Greenside, H. S. & Coughran, W. M. 1984 Phys. Rev. A 30, 398.
Kirchartz, K. R. & Oertel, H. 1988 J. Fluid Mech. 192, 249.
Koschmieder, E. L. 1993 Benard Cells and Taylor Vortices. Cambridge University Press.
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 279.
Pomeau, Y. & Manneville, P. 1980 Phys. Lett. A 75, 296.
Pomeau, Y. & Zaleski, S. 1981 J. Phys. Paris 42, 515.
Schluter, A., Lortz, D. & Busse, F. H. 1965 J. Fluid Mech. 23, 129.
Segel, L. A. 1969 J. Fluid Mech. 38, 203.
Sivapragasam, V. R. 1995 Finite amplitude patterns of convection near a lateral boundary. PhD thesis, City University, London.
Stork, K. & Muller, U. 1972 J. Fluid Mech. 54, 599.
Swift, J. B. & Hohenberg, P. C. 1977 Phys. Rev. A 15, 319.