Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T22:40:11.506Z Has data issue: false hasContentIssue false

On a mechanism of near-wall reverse flow formation in a turbulent duct flow

Published online by Cambridge University Press:  28 July 2021

Dinar Zaripov*
Affiliation:
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, PR China Institute of Thermophysics SB RAS, Lavrentyev ave. 1, 630090Novosibirsk, Russia
Vladislav Ivashchenko
Affiliation:
Institute of Thermophysics SB RAS, Lavrentyev ave. 1, 630090Novosibirsk, Russia Novosibirsk State University, Pirogov str. 1, 630090Novosibirsk, Russia
Rustam Mullyadzhanov
Affiliation:
Institute of Thermophysics SB RAS, Lavrentyev ave. 1, 630090Novosibirsk, Russia Novosibirsk State University, Pirogov str. 1, 630090Novosibirsk, Russia
Renfu Li*
Affiliation:
School of Aerospace Engineering, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, PR China
Nikolay Mikheev
Affiliation:
Institute of Power Engineering and Advanced Technologies, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevskiy str. 2/31, 420111Kazan, Russia
Christian J. Kähler
Affiliation:
Institute of Fluid Mechanics and Aerodynamics, Bundeswehr University Munich, Werner-Heisenberg-Weg 39, 85577Neubiberg, Germany
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

We address the issue of the generation mechanism of near-wall reverse flow (NWRF) events in a fully developed turbulent duct flow using direct numerical simulations and particle image velocimetry at a relatively low Reynolds number $Re_\tau \simeq 200$. The analysis demonstrates the existence of a large-scale high-momentum flow structure originating upstream of a NWRF region. We propose a conceptual model of the NWRF formation and suggest that they are caused by intensive hairpin vortices incipient at the interface between large-scale high- and low-momentum flow regions identified using a conditional averaging procedure. The similarity of a flow topology associated with the NWRF region for $Re_\tau \simeq 200$ with those for $Re_\tau \simeq 1000$ (Chin et al., Phys. Rev. Fluids, vol. 3, issue 11, 2018, p. 114607) and $550 \leqslant Re_\tau \leqslant 2000$ (Cardesa et al., J. Fluid Mech., vol. 880, 2019) indicates the generality of the proposed mechanism.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alamo, J.C.D., Jiménez, J., Zandonade, P. & Moser, R.D 2004 Scaling of the energy spectra of turbulent channels. J. Fluid Mech. 500, 135144.Google Scholar
Bobke, A., Vinuesa, R., Örlü, R. & Schlatter, P. 2017 History effects and near equilibrium in adverse-pressure-gradient turbulent boundary layers. J. Fluid Mech. 820, 667692.CrossRefGoogle Scholar
Bross, M., Fuchs, T. & Kähler, C.J. 2019 Interaction of coherent flow structures in adverse pressure gradient turbulent boundary layers. J. Fluid Mech. 873, 287321.10.1017/jfm.2019.408CrossRefGoogle Scholar
Brücker, Ch. 2015 Evidence of rare backflow and skin-friction critical points in near-wall turbulence using micropillar imaging. Phys. Fluids 27 (3), 031705.CrossRefGoogle Scholar
Cardesa, J.I., Monty, J.P., Soria, J. & Chong, M.S. 2014 Skin-friction critical points in wall-bounded flows. J. Phys.: Conf. Ser. 506 (1), 012009.Google Scholar
Cardesa, J.I., Monty, J.P., Soria, J. & Chong, M.S. 2019 The structure and dynamics of backflow in turbulent channels. J. Fluid Mech. 880, R3.10.1017/jfm.2019.774CrossRefGoogle Scholar
Chin, R.C., Monty, J.P., Chong, M.S. & Marusic, I. 2018 Conditionally averaged flow topology about a critical point pair in the skin friction field of pipe flows using direct numerical simulations. Phys. Rev. Fluids 3 (11), 114607.10.1103/PhysRevFluids.3.114607CrossRefGoogle Scholar
Chin, R.C., Vinuesa, R., Örlü, R., Cardesa, J.I., Noorani, A., Chong, M.S. & Schlatter, P. 2020 Backflow events under the effect of secondary flow of Prandtl's first kind. Phys. Rev. Fluids 5 (7), 074606.CrossRefGoogle Scholar
Chong, M.S., Monty, J.P., Chin, C. & Marusic, I. 2012 The topology of skin friction and surface vorticity fields in wall-bounded flows. J. Turbul. 13, N6.10.1080/14685248.2012.663093CrossRefGoogle Scholar
Colella, K.J. & Keith, W.L. 2003 Measurements and scaling of wall shear stress fluctuations. Exp. Fluids 34 (2), 253260.CrossRefGoogle Scholar
Diaz-Daniel, C., Laizet, S. & Vassilicos, J.C. 2017 Wall shear stress fluctuations: mixed scaling and their effects on velocity fluctuations in a turbulent boundary layer. Phys. Fluids 29 (5), 055102.10.1063/1.4984002CrossRefGoogle Scholar
Eckelmann, H. 1974 The structure of the viscous sublayer and the adjacent wall region in a turbulent channel flow. J. Fluid Mech. 65 (3), 439459.10.1017/S0022112074001479CrossRefGoogle Scholar
Fischer, P., Kruse, J., Mullen, J., Tufo, H., Lottes, J. & Kerkemeier, S. 2008 Nek5000: open source spectral element CFD solver. Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL, see https://nek5000.mcs.anl.gov/index.php/MainPage, 2.Google Scholar
Hu, Z.W., Morfey, C.L. & Sandham, N.D. 2006 Wall pressure and shear stress spectra from direct simulations of channel flow. AIAA J. 44 (7), 15411549.10.2514/1.17638CrossRefGoogle Scholar
Jalalabadi, R. & Sung, H.J. 2018 Influence of backflow on skin friction in turbulent pipe flow. Phys. Fluids 30 (6), 065104.CrossRefGoogle Scholar
Kähler, C.J., Scharnowski, S. & Cierpka, C. 2012 a On the resolution limit of digital particle image velocimetry. Exp Fluids 52 (6), 16291639.10.1007/s00348-012-1280-xCrossRefGoogle Scholar
Kähler, C.J., Scharnowski, S. & Cierpka, C. 2012 b On the uncertainty of digital piv and ptv near walls. Exp. Fluids 52 (6), 16411656.10.1007/s00348-012-1307-3CrossRefGoogle Scholar
Kim, J. & Hussain, F. 1993 Propagation velocity of perturbations in turbulent channel flow. Phys. Fluids A 5 (3), 695706.10.1063/1.858653CrossRefGoogle Scholar
Lenaers, P., Li, Q., Brethouwer, G., Schlatter, P. & Örlü, R. 2012 Rare backflow and extreme wall-normal velocity fluctuations in near-wall turbulence. Phys. Fluids 24 (3), 035110.10.1063/1.3696304CrossRefGoogle Scholar
Perry, A.E. & Chong, M.S. 1986 A series-expansion study of the Navier–Stokes equations with applications to three-dimensional separation patterns. J. Fluid Mech. 173, 207223.CrossRefGoogle Scholar
Pirozzoli, S., Modesti, D., Orlandi, P. & Grasso, F. 2018 Turbulence and secondary motions in square duct flow. J. Fluid Mech. 840, 631655.Google Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018 Particle Image Velocimetry: A Practical Guide. Springer.10.1007/978-3-319-68852-7CrossRefGoogle Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.10.1146/annurev.fl.23.010191.003125CrossRefGoogle Scholar
Robinson, S.K. 1992 The kinematics of turbulent boundary layer structure. NASA Tech. Memo. 103859.Google Scholar
Schlatter, P. & Örlü, R. 2010 Assessment of direct numerical simulation data of turbulent boundary layers. J. Fluid Mech. 659, 116126.10.1017/S0022112010003113CrossRefGoogle Scholar
Spalart, P.R. & Coleman, G.N. 1997 Numerical study of a separation bubble with heat transfer. Eur. J. Mech. (B/Fluids) 16 (2), 169189.Google Scholar
Vinuesa, R., Örlü, R. & Schlatter, P. 2017 Characterisation of backflow events over a wing section. J. Turbul. 18 (2), 170185.10.1080/14685248.2016.1259626CrossRefGoogle Scholar
Vinuesa, R., Schlatter, P. & Nagib, H.M. 2018 Secondary flow in turbulent ducts with increasing aspect ratio. Phys. Rev. Fluids 3 (5), 054606.10.1103/PhysRevFluids.3.054606CrossRefGoogle Scholar
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6), 10961100.10.1007/s00348-005-0016-6CrossRefGoogle Scholar
Willert, C.E., et al. 2018 Experimental evidence of near-wall reverse flow events in a zero pressure gradient turbulent boundary layer. Exp. Therm. Fluid Sci. 91, 320328.CrossRefGoogle Scholar
Zaripov, D., Li, R. & Dushin, N. 2019 Dissipation rate estimation in the turbulent boundary layer using high-speed planar particle image velocimetry. Exp. Fluids 60 (1), 18.10.1007/s00348-018-2663-4CrossRefGoogle Scholar