Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T16:05:32.222Z Has data issue: false hasContentIssue false

Numerical study on turbulence modulation of finite-size particles in plane-Couette flow

Published online by Cambridge University Press:  29 August 2023

Cheng Wang
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China
Linfeng Jiang*
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Physics of Fluids Group, and Max Planck UT Center for Complex Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands
Chao Sun*
Affiliation:
Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, PR China Department of Engineering Mechanics, School of Aerospace Engineering, Tsinghua University, Beijing 100084, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

Turbulent plane-Couette flow suspended with finite-size spheroidal particles is studied using fully particle-resolved direct numerical simulations. The effects of particle aspect ratio on turbulent arguments and particle statistics are explored, leading to the same conclusions as the previous experimental findings (Wang et al., J. Fluid Mech., vol. 937, 2022, A15). By performing stress analysis, we find that the presence of particles introduces extra stresses to the system and accounts for the global drag increases. The particle-laden flow cases exhibit spectra that are consistent with the scalings $k^{-5/3}$ and $k^{-3}$ in the large and small scales, respectively. While the $k^{-3}$ scaling observed in the particle-laden flow is reminiscent of bubbly flow, an examination of the particle Reynolds number suggests that the mechanism responsible may not be attributable to the pseudo-turbulence induced by particles as in the case of bubbles. In the view of particle statistics, we observe that spherical and non-spherical particles cluster preferentially in the near-wall and the bulk region, respectively, and that the orientations of non-spherical particles are affected by their aspect ratios, especially in the near-wall region. The present numerical results, combined with previous experimental findings in Wang et al. (J. Fluid Mech., vol. 937, 2022, A15), provide in-depth information on both the fluid and the particle phase, contributing to a better understanding of particle suspension in shear flows.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alméras, E., Mathai, V., Lohse, D. & Sun, C. 2017 Experimental investigation of the turbulence induced by a bubble swarm rising within incident turbulence. J. Fluid Mech. 825, 10911112.CrossRefGoogle Scholar
Ardekani, M.N. & Brandt, L. 2019 Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech. 859, 887901.CrossRefGoogle Scholar
Ardekani, M.N., Costa, P., Breugem, W.P. & Brandt, L. 2016 Numerical study of the sedimentation of spheroidal particles. Intl J. Multiphase Flow 87, 1634.CrossRefGoogle Scholar
Ardekani, M.N., Costa, P., Breugem, W.-P., Picano, F. & Brandt, L. 2017 Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J. Fluid Mech. 816, 4370.CrossRefGoogle Scholar
Assen, M.P.A., Ng, C.S., Will, J.B., Stevens, R.J.A.M., Lohse, D. & Verzicco, R. 2022 Strong alignment of prolate ellipsoids in Taylor–Couette flow. J. Fluid Mech. 935, A7.CrossRefGoogle Scholar
Batchelor, G.K. 1970 The stress system in a suspension of force-free particles. J. Fluid Mech. 41 (3), 545570.CrossRefGoogle Scholar
Bellani, G. & Variano, E.A. 2012 Slip velocity of large neutrally buoyant particles in turbulent flows. New J. Phys. 14 (12), 125009.CrossRefGoogle Scholar
Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16 (3-4), 242251.CrossRefGoogle Scholar
Calzavarini, E. 2019 Eulerian–Lagrangian fluid dynamics platform: the ch4-project. Softw. Impacts 1, 100002.CrossRefGoogle Scholar
Calzavarini, E., Jiang, L. & Sun, C. 2020 Anisotropic particles in two-dimensional convective turbulence. Phys. Fluids 32 (2), 023305.CrossRefGoogle Scholar
Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179189.CrossRefGoogle Scholar
Cisse, M., Homann, H. & Bec, J. 2013 Slipping motion of large neutrally buoyant particles in turbulence. J. Fluid Mech. 735, R1.CrossRefGoogle Scholar
Cooley, M.D.A. & O'Neill, M.E. 1969 On the slow motion generated in a viscous fluid by the approach of a sphere to a plane wall or stationary sphere. Mathematika 16 (1), 3749.CrossRefGoogle Scholar
Costa, P., Boersma, B.J., Westerweel, J. & Breugem, W.-P. 2015 Collision model for fully resolved simulations of flows laden with finite-size particles. Phys. Rev. E 92 (5), 053012.CrossRefGoogle ScholarPubMed
Demou, A.D., Ardekani, M.N., Mirbod, P. & Brandt, L. 2022 Turbulent Rayleigh–Bénard convection in non-colloidal suspensions. J. Fluid Mech. 945, A6.CrossRefGoogle Scholar
Dung, O.-Y., Waasdorp, P., Sun, C., Lohse, D. & Huisman, S.G. 2022 The emergence of bubble-induced scaling in thermal spectra in turbulence. arXiv:2207.05175.CrossRefGoogle Scholar
Eshghinejadfard, A., Zhao, L. & Thévenin, D. 2018 Lattice Boltzmann simulation of resolved oblate spheroids in wall turbulence. J. Fluid Mech. 849, 510540.CrossRefGoogle Scholar
Fiabane, L., Zimmermann, R., Volk, R., Pinton, J.-F. & Bourgoin, M. 2012 Clustering of finite-size particles in turbulence. Phys. Rev. E 86 (3), 035301.CrossRefGoogle ScholarPubMed
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.CrossRefGoogle Scholar
Hidman, N., Ström, H., Sasic, S. & Sardina, G. 2022 Assessing passive scalar dynamics in bubble-induced turbulence using DNS. arXiv:2211.06293.CrossRefGoogle Scholar
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.CrossRefGoogle Scholar
Innocenti, A., Jaccod, A., Popinet, S. & Chibbaro, S. 2021 Direct numerical simulation of bubble-induced turbulence. J. Fluid Mech. 918, A23.CrossRefGoogle Scholar
Jiang, L., Calzavarini, E. & Sun, C. 2020 Rotation of anisotropic particles in Rayleigh–Bénard turbulence. J. Fluid Mech. 901, A8.CrossRefGoogle Scholar
Jiang, L., Wang, C., Liu, S., Sun, C. & Calzavarini, E. 2021 Rotational dynamics of bottom-heavy rods in turbulence from experiments and numerical simulations. Theor. Appl. Mech. Lett. 11 (1), 100227.CrossRefGoogle Scholar
Jiang, L., Wang, C., Liu, S., Sun, C. & Calzavarini, E. 2022 Dynamics of finite-size spheroids in turbulent flow: the roles of flow structures and particle boundary layers. J. Fluid Mech. 939, A22.CrossRefGoogle Scholar
Lance, M. & Bataille, J. 1991 Turbulence in the liquid phase of a uniform bubbly air–water flow. J. Fluid Mech. 222, 95118.CrossRefGoogle Scholar
Li, Y., Xia, Z. & Wang, L.-P. 2022 Inertial migration of a neutrally buoyant oblate spheroid in three-dimensional square duct Poiseuille flows. Intl J. Multiphase Flow 155, 104148.CrossRefGoogle Scholar
Lucci, F., Ferrante, A. & Elghobashi, S. 2010 Modulation of isotropic turbulence by particles of Taylor length-scale size. J. Fluid Mech. 650, 555.CrossRefGoogle Scholar
Lundell, F., Söderberg, L.D. & Alfredsson, P.H. 2011 Fluid mechanics of papermaking. Annu. Rev. Fluid Mech. 43, 195217.CrossRefGoogle Scholar
Luo, K., Wang, Z., Fan, J. & Cen, K. 2007 Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method. Phys. Rev. E 76 (6), 066709.CrossRefGoogle ScholarPubMed
Mathai, V., Calzavarini, E., Brons, J., Sun, C. & Lohse, D. 2016 Microbubbles and microparticles are not faithful tracers of turbulent acceleration. Phys. Rev. Lett. 117 (2), 024501.CrossRefGoogle Scholar
Mathai, V., Lohse, D. & Sun, C. 2020 Bubbly and buoyant particle-laden turbulent flows. Annu. Rev. Cond. Matt. Phys. 11, 529559.CrossRefGoogle Scholar
Mazzitelli, I.M. & Lohse, D. 2009 Evolution of energy in flow driven by rising bubbles. Phys. Rev. E 79 (6), 066317.CrossRefGoogle ScholarPubMed
Mendez-Diaz, S., Serrano-Garcia, J.C., Zenit, R. & Hernandez-Cordero, J.A. 2013 Power spectral distributions of pseudo-turbulent bubbly flows. Phys. Fluids 25 (4), 043303.CrossRefGoogle Scholar
Mercado, J.M., Gomez, D.C., Van Gils, D., Sun, C. & Lohse, D. 2010 On bubble clustering and energy spectra in pseudo-turbulence. J. Fluid Mech. 650, 287306.CrossRefGoogle Scholar
Mittal, R., Ni, R. & Seo, J.-H. 2020 The flow physics of Covid-19. J. Fluid Mech. 894, F2.CrossRefGoogle Scholar
Moffet, R.C. & Prather, K.A. 2009 In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl Acad. Sci. USA 106 (29), 1187211877.CrossRefGoogle ScholarPubMed
de Motta, J.C.B., Estivalezes, J.-L., Climent, E. & Vincent, S. 2016 Local dissipation properties and collision dynamics in a sustained homogeneous turbulent suspension composed of finite size particles. Intl J. Multiphase Flow 85, 369379.CrossRefGoogle Scholar
Obligado, M. & Bourgoin, M. 2022 Dynamics of towed particles in a turbulent flow. J. Fluids Struct. 114, 103704.CrossRefGoogle Scholar
Owolabi, B.E. & Lin, C.-A. 2018 Marginally turbulent Couette flow in a spanwise confined passage of square cross section. Phys. Fluids 30 (7), 075102.CrossRefGoogle Scholar
Pandey, V., Mitra, D. & Perlekar, P. 2022 Kolmogorov turbulence co-exists with pseudo-turbulence in buoyancy-driven bubbly flows. arXiv:2204.04505.CrossRefGoogle Scholar
Pandey, V., Ramadugu, R. & Perlekar, P. 2020 Liquid velocity fluctuations and energy spectra in three-dimensional buoyancy-driven bubbly flows. J. Fluid Mech. 884, R6.CrossRefGoogle Scholar
Pedley, T.J. & Kessler, J.O. 1992 Hydrodynamic phenomena in suspensions of swimming microorganisms. Annu. Rev. Fluid Mech. 24 (1), 313358.CrossRefGoogle Scholar
Peng, C., Ayala, O.M. & Wang, L.-P. 2020 Flow modulation by a few fixed spherical particles in a turbulent channel flow. J. Fluid Mech. 884, A15.CrossRefGoogle Scholar
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Picano, F., Breugem, W.-P. & Brandt, L. 2015 Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech. 764, 463487.CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Prakash, V.N., Martínez Mercado, J., van Wijngaarden, L., Mancilla, E., Tagawa, Y., Lohse, D. & Sun, C. 2016 Energy spectra in turbulent bubbly flows. J. Fluid Mech. 791, 174190.CrossRefGoogle Scholar
Qiu, J., Mousavi, N., Zhao, L. & Gustavsson, K. 2022 Active gyrotactic stability of microswimmers using hydromechanical signals. Phys. Rev. Fluids 7 (1), 014311.CrossRefGoogle Scholar
Qureshi, N.M., Arrieta, U., Baudet, C., Cartellier, A., Gagne, Y. & Bourgoin, M. 2008 Acceleration statistics of inertial particles in turbulent flow. Eur. Phys. J. B 66 (4), 531536.CrossRefGoogle Scholar
Qureshi, N.M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.CrossRefGoogle ScholarPubMed
Riboux, G., Risso, F. & Legendre, D. 2010 Experimental characterization of the agitation generated by bubbles rising at high Reynolds number. J. Fluid Mech. 643, 509539.CrossRefGoogle Scholar
Risso, F. 2018 Agitation, mixing, and transfers induced by bubbles. Annu. Rev. Fluid Mech. 50, 2548.CrossRefGoogle Scholar
Sabban, L. & van Hout, R. 2011 Measurements of pollen grain dispersal in still air and stationary, near homogeneous, isotropic turbulence. J. Aerosol. Sci. 42 (12), 867882.CrossRefGoogle Scholar
Stocker, R. 2012 Marine microbes see a sea of gradients. Science 338 (6107), 628633.CrossRefGoogle Scholar
Voth, G.A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (1), 249276.CrossRefGoogle Scholar
Wang, G., Abbas, M. & Climent, É. 2017 a Modulation of large-scale structures by neutrally buoyant and inertial finite-size particles in turbulent Couette flow. Phys. Rev. Fluids 2 (8), 084302.CrossRefGoogle Scholar
Wang, G., Abbas, M., Yu, Z., Pedrono, A. & Climent, E. 2018 Transport of finite-size particles in a turbulent Couette flow: the effect of particle shape and inertia. Intl J. Multiphase Flow 107, 168181.CrossRefGoogle Scholar
Wang, C., Jiang, L., Jiang, H., Sun, C. & Liu, S. 2021 Heat transfer and flow structure of two-dimensional thermal convection over ratchet surfaces. J. Hydrodyn. 33 (5), 970978.CrossRefGoogle Scholar
Wang, Z., Mathai, V. & Sun, C. 2019 Self-sustained biphasic catalytic particle turbulence. Nat. Commun. 10 (1), 3333.CrossRefGoogle ScholarPubMed
Wang, Y., Sierakowski, A.J. & Prosperetti, A. 2017 b Fully-resolved simulation of particulate flows with particles–fluid heat transfer. J. Comput. Phys. 350, 638656.CrossRefGoogle Scholar
Wang, C., Yi, L., Jiang, L. & Sun, C. 2022 How do the finite-size particles modify the drag in Taylor–Couette turbulent flow. J. Fluid Mech. 937, A15.CrossRefGoogle Scholar
Will, J.B. & Krug, D. 2021 a Dynamics of freely rising spheres: the effect of moment of inertia. J. Fluid Mech. 927, A7.CrossRefGoogle Scholar
Will, J.B. & Krug, D. 2021 b Rising and sinking in resonance: mass distribution critically affects buoyancy-driven spheres via rotational dynamics. Phys. Rev. Lett. 126 (17), 174502.CrossRefGoogle ScholarPubMed
Will, J.B., Mathai, V., Huisman, S.G., Lohse, D., Sun, C. & Krug, D. 2021 Kinematics and dynamics of freely rising spheroids at high Reynolds numbers. J. Fluid Mech. 912, A16.CrossRefGoogle Scholar
Yousefi, A., Ardekani, M.N. & Brandt, L. 2020 Modulation of turbulence by finite-size particles in statistically steady-state homogeneous shear turbulence. J. Fluid Mech. 899, A19.CrossRefGoogle Scholar
Zhang, L., Zhou, Z. & Shao, X. 2020 Numerical investigation on the drag force of a single bubble and bubble swarm. J. Fluid Mech. 32 (6), 10431049.Google Scholar
Zhang, Q. & Prosperetti, A. 2010 Physics-based analysis of the hydrodynamic stress in a fluid–particle system. Phys. Fluids 22 (3), 033306.CrossRefGoogle Scholar