Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T17:20:59.141Z Has data issue: false hasContentIssue false

A numerical study on reaction-induced radial fingering instability

Published online by Cambridge University Press:  11 January 2019

Vandita Sharma
Affiliation:
Department of Mathematics, Indian Institute of Technology Ropar, 140001 Rupnagar, India
Satyajit Pramanik
Affiliation:
NORDITA, Royal Institute of Technology & Stockholm University, 106 91 Stockholm, Sweden
Ching-Yao Chen
Affiliation:
Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan, 30010Republic of China
Manoranjan Mishra*
Affiliation:
Department of Mathematics, Indian Institute of Technology Ropar, 140001 Rupnagar, India Department of Chemical Engineering, Indian Institute of Technology Ropar, 140001 Rupnagar, India
*
Email address for correspondence: [email protected]

Abstract

The dynamics of $A+B\rightarrow C$ fronts is analysed numerically in a radial geometry. We are interested to understand miscible fingering instabilities when the simple chemical reaction changes the viscosity of the fluid locally and a non-monotonic viscosity profile with a global maximum or minimum is formed. We consider viscosity-matched reactants $A$ and $B$ generating a product $C$ having different viscosity than the reactants. Depending on the effect of $C$ on the viscosity relative to the reactants, different viscous fingering (VF) patterns are captured which are in good qualitative agreement with the existing radial experiments. We have found that, for a given chemical reaction rate, an unfavourable viscosity contrast is not always sufficient to trigger the instability. For every fixed Péclet number ($Pe$), these effects of chemical reaction on VF are summarized in the Damköhler number ($Da$) $-$ the log-mobility ratio ($R_{c}$) parameter space that exhibits a stable region separating two unstable regions corresponding to the cases of more and less viscous product. Fixing $Pe$, we determine $Da$-dependent critical log-mobility ratios $R_{c}^{+}$ and $R_{c}^{-}$ such that no VF is observable whenever $R_{c}^{-}\leqslant R_{c}\leqslant R_{c}^{+}$. The effect of geometry is observable on the onset of instability, where we obtain significant differences from existing results in the rectilinear geometry.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bischofberger, I., Ramachandran, R. & Nagel, S. R 2014 Fingering versus stability in the limit of zero interfacial tension. Nat. Commun. 5, 5265 EP –.Google Scholar
Brau, F., Schuszter, G. & De Wit, A. 2017 Flow control of A + BC fronts by radial injection. Phys. Rev. Lett. 118, 134101.Google Scholar
Brockmann, D. & Helbing, D. 2013 The hidden geometry of complex, network-driven contagion phenomena. Science 342 (6164), 13371342.Google Scholar
Chen, C.-Y., Huang, C.-W., Gadêlha, H. & Miranda, J. A. 2008 Radial viscous fingering in miscible Hele-Shaw flows: a numerical study. Phys. Rev. E 78, 016306.Google Scholar
Chen, C.-Y., Huang, Y.-S. & Miranda, J. A. 2011 Diffuse-interface approach to rotating Hele-Shaw flows. Phys. Rev. E 84, 046302.Google Scholar
Chen, C.-Y., Huang, Y.-S. & Miranda, J. A. 2014 Radial Hele-Shaw flow with suction: fully nonlinear pattern formation. Phys. Rev. E 89, 053006.Google Scholar
Chen, C.-Y. & Meiburg, E. 1998 Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case. J. Fluid Mech. 371, 233268.Google Scholar
De Wit, A. 2016 Chemo-hydrodynamic patterns in porous media. Phil. Trans. R. Soc. Lond. A 374 (2078), 20150419.Google Scholar
De Wit, A. & Homsy, G. M. 1999 Viscous fingering in reaction-diffusion systems. J. Chem. Phys. 110 (17), 86638675.Google Scholar
Gérard, T. & De Wit, A. 2009 Miscible viscous fingering induced by a simple A + BC chemical reaction. Phys. Rev. E 79, 016308.Google Scholar
Haudin, F., Cartwright, J. H. E., Brau, F. & De Wit, A. 2014 Spiral precipitation patterns in confined chemical gardens. Proc. Natl Acad. Sci. USA 111 (49), 1736317367.Google Scholar
Hejazi, S. H. & Azaiez, J. 2010 Non-linear interactions of dynamic reactive interfaces in porous media. Chem. Engng Sci. 65 (2), 938949.Google Scholar
Hejazi, S. H., Trevelyan, P. M. J., Azaiez, J. & De Wit, A. 2010 Viscous fingering of a miscible reactive A + BC interface: a linear stability analysis. J. Fluid Mech. 652, 501528.Google Scholar
Lega, J. & Passot, T. 2007 Hydrodynamics of bacterial colonies. Nonlinearity 20 (1), C1.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.Google Scholar
Maes, R., Rousseaux, G., Scheid, B., Mishra, M., Colinet, P. & De Wit, A. 2010 Experimental study of dispersion and miscible viscous fingering of initially circular samples in Hele-Shaw cells. Phys. Fluids 22 (12), 123104.Google Scholar
Nagatsu, Y. & De Wit, A. 2011 Viscous fingering of a miscible reactive A + BC interface for an infinitely fast chemical reaction: nonlinear simulations. Phys. Fluids 23 (4), 043103.Google Scholar
Nagatsu, Y., Matsuda, K., Kato, Y. & Tada, Y. 2007 Experimental study on miscible viscous fingering involving viscosity changes induced by variations in chemical species concentrations due to chemical reactions. J. Fluid Mech. 571, 475493.Google Scholar
Nagilla, A., Prabhakar, R. & Jadhav, S. 2018 Linear stability of an active fluid interface. Phys. Fluids 30 (2), 022109.Google Scholar
Podgorski, T., Sostarecz, M. C., Zorman, S. & Belmonte, A. 2007 Fingering instabilities of a reactive micellar interface. Phys. Rev. E 76, 016202.Google Scholar
Riolfo, L. A., Nagatsu, Y., Iwata, S., Maes, R., Trevelyan, P. M. J. & De Wit, A. 2012 Experimental evidence of reaction-driven miscible viscous fingering. Phys. Rev. E 85, 015304.Google Scholar
Tan, C. T. & Homsy, G. M. 1987 Stability of miscible displacements in porous media: radial source flow. Phys. Fluids 30 (5), 12391245.Google Scholar