Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T21:25:39.052Z Has data issue: false hasContentIssue false

Numerical study of turbulent magnetohydrodynamic channel flow

Published online by Cambridge University Press:  23 January 2007

THOMAS BOECK
Affiliation:
Fakultät Maschinenbau, Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany
DMITRY KRASNOV
Affiliation:
Fakultät Maschinenbau, Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany
EGBERT ZIENICKE
Affiliation:
Institut für Physik, Technische Universität Ilmenau, Postfach 100565, 98684 Ilmenau, Germany

Abstract

Mean flow properties of turbulent magnetohydrodynamic channel flow with electrically insulating channel walls are studied using high-resolution direct numerical simulations. The Lorentz force due to the homogeneous wall-normal magnetic field is computed in the quasi-static approximation. For strong magnetic fields, the mean velocity profile shows a clear three-layer structure consisting of a viscous region near each wall and a plateau in the middle connected by logarithmic layers. This structure reflects the significance of viscous, turbulent, and electromagnetic stresses in the streamwise momentum balance dominating the viscous, logarithmic, and plateau regions, respectively. The width of the logarithmic layers changes with the ratio of Reynolds- and Hartmann numbers. Turbulent stresses typically decay more rapidly away from the walls than predicted by mixing-length models.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alboussière, T. & Lingwood, R. J. 2000 A model for the turbulent Hartmann layer. Phys. Fluids 12, 15351543.CrossRefGoogle Scholar
Branover, H. 1978 Magnetohydrodynamic Flow in Ducts. John Wiley.Google Scholar
Davidson, P. A. 1999 Magnetohydrodynamics in materials processing. Annu. Rev. Fluid Mech. 31, 273300.CrossRefGoogle Scholar
Harris, L. P. 1960 Hydromagnetic Channel Flows. MIT Press and John Wiley.Google Scholar
Hartmann, J. 1937 Hg-dynamics I: Theory of the laminar flow of an electrically conductive liquid in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15 (6), 128.Google Scholar
Hartmann, J. & Lazarus, F. 1937 Hg-dynamics II: Experimental investigations on the flow of mercury in a homogeneous magnetic field. K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 15 (7), 145.Google Scholar
Kenjereš, S. & Hanjalić, K. 2000 On the implementation of effects of Lorentz force in turbulence closure models. Intl J. Heat Fluid Flow 21, 329337.CrossRefGoogle Scholar
Knaepen, B., Kassinos, S. & Carati, D. 2004 Magnetohydrodynamic turbulence at moderate magnetic Reynolds number. J. Fluid Mech. 513, 199220.CrossRefGoogle Scholar
Kobayashi, H. 2006 Large eddy simulation of magnetohydrodynamic turbulent channel flows with local subgrid-scale model based on coherent structures. Phys. Fluids 18, 045107.CrossRefGoogle Scholar
Krasnov, D. S., Zienicke, E., Zikanov, O., Boeck, T. & Thess, A. 2004 Numerical study of instability and transition to turbulence in the Hartmann flow. J. Fluid Mech. 504, 183211.CrossRefGoogle Scholar
Lee, D. & Choi, H. 2001 Magnetohydrodynamic turbulent flow in a channel at low magnetic Reynolds number. J. Fluid Mech. 429, 367394.CrossRefGoogle Scholar
Lykoudis, P. S. & Brouillette, E. C. 1967 Magneto-fluid-mechanic channel flow. ii. theory. Phys. Fluids 10, 10021007.CrossRefGoogle Scholar
Moreau, R. 2003 On turbulence in electromagnetic processing. In Proc. 4th Intl Conf. on Electromagnetic Processing of Materials, 14–17 October, 2003, Lyon, France (ed. S. Asai, Y. Fautrelle & P. Gillon).Google Scholar
Moresco, P. & Alboussière, T. 2004 Experimental study of the instability of the Hartmann layer. J. Fluid Mech. 504, 167181.CrossRefGoogle Scholar
Moser, R. D., Kim, J. & Mansour, N. N. 1999 Direct numerical simulation of turbulent channel flow up to Re τ = 590. Phys. Fluids 11, 943945.CrossRefGoogle Scholar
Satake, S., Kunugi, T., Naito, N., Takase, K. & , Y. O. 2005 DNS of turbulent channel flow at high Reynolds number under a uniform magnetic field. In 15th Riga and 6th PAMIR Conference on Fundamental and Applied MHD (ed. Alemany, A., Gailitis, A. & Gerbeth, G.), pp. 175178. Riga, Latvia.Google Scholar
Widlund, O., Zahrai, S. & Bark, F. 1998 Development of a Reynolds stress closure for modelling of homogenous MHD turbulence. Phys. Fluids 10, 1987.CrossRefGoogle Scholar
Zienicke, E. A. & Krasnov, D. 2005 Parametric study of streak breakdown mechanism in Hartmann flow. Phys. Fluids 17, 114101.CrossRefGoogle Scholar
Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.CrossRefGoogle Scholar