Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T09:01:46.308Z Has data issue: false hasContentIssue false

A numerical study of the Bénard cell

Published online by Cambridge University Press:  29 March 2006

André Cabelli
Affiliation:
The University of New South Wales, Kensington, Australia
G. de Vahl Davis
Affiliation:
The University of New South Wales, Kensington, Australia

Abstract

When a layer of liquid is heated from below at a rate which exceeds a certain critical value, a two- or three-dimensional motion is generated. This motion arises from the action of buoyancy and surface tension forces, the latter being due to variations in the temperature of the liquid surface.

The two-dimensional form of the flow has been studied by a numerical method. It consists of a series of rolls, rotating alternately clockwise and anticlockwise, which are shown to be symmetrical about the dividing streamlines. As well as a detailed description of the motion and temperature of the liquid, and of the effects on these characteristics of variations in the Rayleigh, Marangoni, Prandtl and Biot numbers, a study has been made of the conditions under which the motion first starts, the wavelength of the rolls and the rate of heat transfer across the liquid layer.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, H. 1900a Rev. Gen. Sci. Pures Appl. Bull. Assoc. Franc. Avanc. Sci. 11, 1261.
Bénard, H. 1900b Rev. Gen. Sci. Pures Appl. Bull. Assoc. Franc. Avanc. Sci. 11, 1309.
Berg, J. C., Acrivos, A. & Boudart, M. 1966 Adv. Chem. Engng, 6, 61.
Brian, P. L. T. 1961 A.I.Ch.E. J. 7, 367.
Davis, S. H. 1968 J. Fluid Mech. 32, 619.
Di Federico, I. & Foraboshi, F. P. 1966 Int. J. Heat Mass Transfer, 9, 1351.
Elder, J. W. 1965 J. Fluid Mech. 23, 77.
Foster, T. D. 1969 J. Fluid Mech. 37, 81.
Greenspan, D. 1968 Computer Science Tech. Rep. 37. University of Wisconsin.
Koschmieder, E. L. 1966 Beitr. Phys. Atmos. 39, 1.
Koschmieder, E. L. 1967 J. Fluid Mech. 30, 9.
MacGregor, R. K. & Emery, A. F. 1969 Trans. ASME (C), J. Heat Transfer, 3, 391.
Malkus, W. V. R. 1954a Proc. Roy. Soc. A, 255, 185.
Malkus, W. V. R. 1954b Proc. Roy. Soc. A, 225, 196.
Nield, D. A. 1964 J. Fluid Mech. 19, 341.
Pearson, J. R. A. 1958 J. Fluid Mech. 4, 489.
Pillow, A. F. 1952 Aust. Dept. Supply Aero. Res. Lab. Rep. A 79.
Robinson, J. L. 1967 J. Fluid Mech. 30, 577.
Samuels, M. R. 1966 Ph.D. Thesis, University of Michigan.
Schulter, A., Lortz, D. & Busse, F. 1965 J. Fluid Mech. 23, 129.
Scriven, L. & Sternling, C. 1964 J. Fluid Mech. 19, 321.
Smith, E. A. 1966 J. Fluid Mech. 24, 401.
Somerscales, E. F. C. & Dropkin, D. 1966 Int. J. Heat Mass Transfer, 9, 1189.
Thompson, J. J. 1855 Phil. Mag. (4) 10, 330.