Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T06:12:07.048Z Has data issue: false hasContentIssue false

Numerical study of steady flow past spheroids

Published online by Cambridge University Press:  29 March 2006

Jacob H. Masliyah
Affiliation:
Department of Chemical Engineering, University of British Columbia
Norman Epstein
Affiliation:
Department of Chemical Engineering, University of British Columbia

Abstract

Numerical methods have been used to investigate the steady incompressible flow past oblate and prolate spheroids for Reynolds numbers up to 100. The ratio of minor to major axis of the spheroids investigated were 0·9, 0·5 and 0·2, together with 1·0, which represents the limiting case of a sphere. The pressure distribution and the skin and form drag coefficients were numerically evaluated for the various Reynolds numbers. Streamlines, equi-vorticity lines and equivelocity lines are presented and show in detail the flow characteristics.

Type
Research Article
Copyright
© 1970 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoi, T. 1955 J. Phys. Soc. Japan, 10, 119.
Breach, D. R. 1961 J. Fluid Mech. 10, 30.
Folsom, R. G. & Arbor, A. 1956 Trans. Am. Soc. Mech. Engrs. 78, 144.
Goldstein, S. 1929 Proc. Roy. Soc., A 123, 216.
Grove, A. S., Shair, F. H., Petersen, E. E. & Acrivos, A. 1964 J. Fluid Mech. 19, 6.
Hamielec, A. E., Hoffman, T. W. & Ross, L. L. 1967 A.I.Ch.E.J. 13, 22.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics (1st edn.). New Jersey: Prentice Hall.
Homann, F. 1936 Der Einfluss grösser Zähigkeit bei der Strömung um den Zylinder und um die Kugel. Z. angew. Math. Mech. 6, 153. (Translation: NACA Tech. Mem. 1334, 1952.)Google Scholar
Jenson, V. G. 1959 Proc. Roy. Soc., A 249, 346.
Jenson, V. G., Horton, J. R. & Wearing, J. R. 1968 Trans. Inst. Chem. Engrs. 46, 17.
Kuwabara, S. 1959 J. Phys. Soc. Japan, 14, 527.
Lapple, C. E. & Shepherd, C. B. 1940 Ind. Eng. Chem. 32, 60.
Leclair, B. P. & Hamielec, A. E. 1968 Ind. Eng. Chem. Fundamentals, 7, 542.
Masliyah, J. H. 1970 Ph.D. Thesis, University of British Columbia.
Masliyah, J. H. & Epstein, N. 1969 Ind. Eng. Chem. Fundamentals, 8, 602.
Mcnown, J. S., Lee, H. M., McPherson, M. B. & Engez, S. M. 1948 Proc. VII Int. Congr. Appl. Mech. 2, 1.
O'Brien, V. 1961 Quart. J. Appl. Math. 19, 16.
Oseen, C. W. 1910 Ark. F. Mat. Astr. Og. Fys. 6, no. 29.
Oseen, C. W. 1927 Hydrodynamik. Leipzig.
Pearcey, T. & McHugh, B. 1955 Phil. Mag. (7), 46, 783.
Proudman, I. & Pearson, J. R. A. 1957 J. Fluid Mech. 2, 23.
Rhodes, J. M. 1967 Ph.D. Thesis, University of Tennessee.
Rimon, Y. & Cheng, S. I. 1969 Phys. Fluids, 12, 949.
Rimon, Y. & Lugt, H. J. 1969 Phys. Fluids, 12, 2465.
Sampson, R. 1891 Phil. Trans. 182, 44.
Schmiedel, J. 1928 Phys. Z. 29, 59.
Stokes, G. 1851 Trans. Camb. Phil. Soc. 9, 8.
Thom, A. 1927 Aero. Res. Counc. R. & M. no. 1194.
Tomotika, S. & Aoi, T. 1950 Quart. J. Mech. 3, 14.
Van Dyke, M. D. 1964 Perturbation Methods in Fluid Mechanics. New York: Academic.