Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T22:13:49.284Z Has data issue: false hasContentIssue false

Numerical study of high speed jets in crossflow

Published online by Cambridge University Press:  13 November 2015

Xiaochuan Chai
Affiliation:
Aerospace Engineering and Mechanics, University of Minnesota, MN, USA
Prahladh S. Iyer
Affiliation:
Aerospace Engineering and Mechanics, University of Minnesota, MN, USA
Krishnan Mahesh*
Affiliation:
Aerospace Engineering and Mechanics, University of Minnesota, MN, USA
*
Email address for correspondence: [email protected]

Abstract

Large-eddy simulation (LES) and dynamic mode decomposition (DMD) are used to study an underexpanded sonic jet injected into a supersonic crossflow and an overexpanded supersonic jet injected into a subsonic crossflow, where the flow conditions are based on the experiments of Santiago & Dutton (J. Propul. Power, vol. 13 (2), 1997, pp. 264–273) and Beresh et al. (AIAA J., vol. 43, 2005a, pp. 379–389), respectively. The simulations successfully reproduce experimentally observed shock systems and vortical structures. The time averaged flow fields are compared to the experimental results, and good agreement is observed. The behaviour of the flow is discussed, and the similarities and differences between the two regimes are studied. The trajectory of the transverse jet is investigated. A modification to Schetz et al.’s theory is proposed (Schetz & Billig, J. Spacecr. Rockets, vol. 3, 1996, pp. 1658–1665), which yields good prediction of the jet trajectories in the current simulations in the near field. Point spectra taken at various locations in the flowfield indicate a global oscillation for the sonic jet flow, wherein different regions in the flow oscillate with a frequency of $St=fD/u_{\infty }=0.3$. For supersonic jet flow, no such global frequency is observed. Dynamic mode decomposition of the three-dimensional pressure field obtained from LES is performed and shows the same behaviour. The DMD results indicate that the $St=0.3$ mode is dominant between the upstream barrel shock and the bow shock for the sonic jet, while the roll up of the upstream shear layer is dominant for the supersonic jet.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramovich, G. N. 1963 The Theory of Turbulent Jets. chap. 12, §  4. Massachusetts Institute of Technology Press.Google Scholar
Arunajatesan, S.2012 Evaluation of two-equation RANS models for simulation of jet-in-cross-flow problems. AIAA Paper 2012-1199.CrossRefGoogle Scholar
Arunajatesan, S. & McWherter-Payne, M. A.2013 Unsteady modeling of jet-in-crossflow problems. AIAA Paper 2013-3099.CrossRefGoogle Scholar
Ben-Yakar, A., Mungal, M. G. & Hanson, R. K. 2006 Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18 (2), 026101.CrossRefGoogle Scholar
Beresh, S., Erven, R., Henfling, J. & Spillers, R. 2005a Penetration of a transverse supersonic jet into a subsonic compressible crossflow. AIAA J. 43, 379389.CrossRefGoogle Scholar
Beresh, S., Erven, R., Henfling, J. & Spillers, R. 2005b Turbulent characteristics of a transverse supersonic jet in a subsonic compressible crossflow. AIAA J. 43, 23852394.CrossRefGoogle Scholar
Beresh, S. J., Henfling, J. F. & Erven, R. J.2002 Surface measurements of a supersonic jet in subsonic compressible crossflow for the validation of computational models. Sandia Report SAND2002-1890.CrossRefGoogle Scholar
Beresh, S. J., Henfling, J. F., Erven, R. J. & Spillers, R. W. 2006 Crossplane velocimetry of a transverse supersonic jet in a transonic crossflow. AIAA J. 44, 30513061.CrossRefGoogle Scholar
Chai, X. & Mahesh, K. 2010 Simulations of high speed turbulent jets in crossflow. AIAA Paper 20104603.Google Scholar
Chai, X. & Mahesh, K.2011 Simulations of high speed turbulent jets in crossflows. AIAA Paper. 2011–650.CrossRefGoogle Scholar
Chai, X. & Mahesh, K. 2012 Dynamic-equation model for large-eddy simulation of compressible flows. J. Fluid Mech. 699, 385413.CrossRefGoogle Scholar
Cubbison, R. W., Anderson, B. H. & Ward, J. J.1961 Surface pressure distributions with a sonic jet normal to adjacent flat surfaces at Mach 2.92–6.4. NASA-TN-D-580, E-1025.Google Scholar
Elena, M., Lacharme, J. P. & Gaviglio, J. 1985 Comparison of hot-wire and laser Doppler anemometry methods in supersonic turbulent boundary layers. Proc. Intl Symp. Laser Anemometry 1, 151157.Google Scholar
Everett, D. E. & Morris, M. J. 1998 Wall pressure measurements for a sonic jet injected transversely into a supersonic crossflow. J. Propul. Power 14 (6), 861868.CrossRefGoogle Scholar
Fric, T. F. & Roshko, A. 1994 Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 147.CrossRefGoogle Scholar
Génin, F. & Menon, S. 2010 Dynamics of sonic jet injection into supersonic crossflow. J. Turbul. 11, N4.CrossRefGoogle Scholar
Germano, M., Piomelli, U., Moin, P. & Cabot, M. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3, 1760.CrossRefGoogle Scholar
Gruber, M. R., Nejadt, A. S. & Chen, T. H. 1995 Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propul. Power 11 (2), 315323.CrossRefGoogle Scholar
Gruber, M. R., Nejad, A. S., Chen, T. H. & Dutton, J. C. 1997 Compressibility effects in supersonic transverse injection flowfields. Phys. Fluids 9 (5), 14481461.CrossRefGoogle Scholar
Iyer, P. S. & Mahesh, K. 2013 High-speed boundary-layer transition induced by a discrete roughness element. J. Fluid Mech. 729, 524562.CrossRefGoogle Scholar
Jovanovic, M. R., Schmid, P. J. & Nichols, J. W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024143.CrossRefGoogle Scholar
Kamotani, Y. & Greber, I. 1972 Experiments on a turbulent jet in a cross flow. AIAA J. 10, 14251429.CrossRefGoogle Scholar
Kawai, S. & Lele, S. K. 2010 Large-eddy simulation of jet mixing in supersonic crossflows. AIAA J. 48, 20632083.CrossRefGoogle Scholar
Lazar, E., Elliott, G. & Glumac, N. 2010 Energy deposition applied to a transverse jet in a supersonic crossflow. AIAA J. 48 (8), 16621672.CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45 (1), 379407.CrossRefGoogle Scholar
McAulay, J. E. & Pavli, A. J.1960 Cold-flow performance of thrust-vector control by secondary injection. NASA-TM-X-416.Google Scholar
McDaniel, J. C. & Graves, J. 1986 A laser-induced-fluorescence visualization study of transverse, sonic fuel injection in a nonreacting supersonic combustor. J. Propul. 4 (6), 591597.CrossRefGoogle Scholar
McMillin, B. K., Seitzman, J. M. & Hanson, R. K. 1994 Comparison of NO and OH planar fluorescence temperature measurements in scramjet model flowfields. AIAA J. 32, 19451952.CrossRefGoogle Scholar
Moin, P., Squires, K., Cabot, W. & Lee, S. 1991 A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids A 3 (11), 27462757.CrossRefGoogle Scholar
Morkovin, M. V., Pierce, C. A. Jr & Craven, C. E. 1952 Interaction of a side jets with a supersonic main stream. In Bull. 35, Engineering Research Institute, University of Michigan, No. UM-N-11701.Google Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2008 Direct numerical simulation of passive scalar transport in transverse jets. J. Fluid Mech. 598, 335360.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2010 DNS of transition in supersonic boundary layers. AIAA Paper 20104440.Google Scholar
Muppidi, S. & Mahesh, K.2011 DNS of unsteady shock boundary layer interaction. AIAA Paper 2011–724.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2012 Direct numerical simulations of roughness-induced transition in supersonic boundary layers. J. Fluid Mech. 693, 2856.CrossRefGoogle Scholar
New, T. H., Lim, T. T. & Luo, S. C. 2003 Elliptic jets in cross-flow. J. Fluid Mech. 494, 119140.CrossRefGoogle Scholar
Papamoschou, D. & Hubbard, D. G. 1993 Visual observations of supersonic transverse jets. Exp. Fluids 14, 468476.CrossRefGoogle Scholar
Park, N. & Mahesh, K.2007 Numerical and modeling issues in les of compressible turbulent flows on unstructured grids. AIAA Paper 2007–0722.CrossRefGoogle Scholar
Peterson, D. P. & Candler, G. V. 2010 Hybrid Reynolds-averaged and large-eddy simulation of normal injection into a supersonic crossflow. J. Propul. Power 26 (3), 533544.CrossRefGoogle Scholar
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M=2.25$ . Phys. Fluids 16 (3), 530545.CrossRefGoogle Scholar
Rana, Z. A., Thornber, B. & Drikakis, D. 2011 Transverse jet injection into a supersonic turbulent cross-flow. Phys. Fluids 23 (4), 046103.CrossRefGoogle Scholar
Rogers, R. C.1971 A study of the mixing of hydrogen injected normal to a supersonic airstream. NASA-TN-D-6114.Google Scholar
Rothstein, A. D. & Wantuck, P. J.(Eds) 1992 A Study of the Normal Injection of Hydrogen into a Heated Supersonic Flow Using Planar Laser-Induced Fluorescence, AIAA Paper 92-3423.Google Scholar
Rowley, C. W., Mezic, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.CrossRefGoogle Scholar
Santiago, J. G. & Dutton, J. C. 1997 Velocity measurements of a jet injected into a supersonic crossflow. J. Propul. Power 13 (2), 264273.CrossRefGoogle Scholar
Schetz, J. A. & Billig, F. S. 1966 Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. Rockets 3, 16581665.CrossRefGoogle Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.CrossRefGoogle Scholar
Schmid, P. J., Li, L., Juniper, M. P. & Pust, O. 2011 Applications of the dynamic mode decomposition. Theor. Comput. Fluid Dyn. 25 (1–4), 249259.CrossRefGoogle Scholar
Smith, S. H. & Mungal, M. G. 1998 Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83122.CrossRefGoogle Scholar
Vanlerberghe, W. M., Santiago, J. G., Dutton, J. C. & Lucht, R. P. 2000 Mixing of a sonic transverse jet injected into a supersonic flow. AIAA J. 38 (3), 470479.CrossRefGoogle Scholar
Walker, R. E., Stone, A. R. & Shandor, M. 1963 Secondary gas injection in a conical rocket nozzle. AIAA J. 1, 334338.CrossRefGoogle Scholar
Yee, H. C., Sandham, N. D. & Djomehri, M. J. 1999 Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150 (1), 199238.CrossRefGoogle Scholar
Yuan, L. L. & Street, R. L. 1998 Trajectory and entrainment of a round jet in crossflow. Phys. Fluids 10 (9), 23232335.CrossRefGoogle Scholar
Zukoski, E. E. & Spaid, F. W. 1964 Secondary injection of gases into a supersonic flow. AIAA J. 2, 16891696.CrossRefGoogle Scholar