Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T13:13:52.211Z Has data issue: false hasContentIssue false

Numerical study of a vortex ring impacting a flat wall

Published online by Cambridge University Press:  16 August 2010

MING CHENG
Affiliation:
Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
JING LOU
Affiliation:
Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis, Singapore 138632, Singapore
LI-SHI LUO*
Affiliation:
Department of Mathematics and Statistics and Center for Computational Sciences, Old Dominion University, Norfolk, VA 23529, USA
*
Email address for correspondence: [email protected]

Abstract

We numerically study a vortex ring impacting a flat wall with an angle of incidence θ ≥ 0°) in three dimensions by using the lattice Boltzmann equation. The hydrodynamic behaviour of the ring–wall interacting flow is investigated by systematically varying the angle of incidence θ in the range of 0° ≤ θ ≤ 40° and the Reynolds number in the range of 100 ≤ Re ≤ 1000, where the Reynolds number Re is based on the translational speed and initial diameter of the vortex ring. We quantify the effects of θ and Re on the evolution of the vortex structure in three dimensions and other flow fields in two dimensions. We observe three distinctive flow regions in the θ–Re parameter space. First, in the low-Reynolds-number region, the ring–wall interaction dissipates the ring without generating any secondary rings. Second, with a moderate Reynolds number Re and a small angle of incidence θ, the ring–wall interaction generates a complete secondary vortex ring, and even a tertiary ring at higher Reynolds numbers. The secondary vortex ring is convected to the centre region of the primary ring and develops azimuthal instabilities, which eventually lead to the development of hairpin-like small vortices through ring–ring interaction. And finally, with a moderate Reynolds number and a sufficiently large angle of incidence θ, only a secondary vortex ring is generated. The secondary vortex wraps around the primary ring and propagates from the near end of the primary ring, which touches the wall first, to the far end, which touches the wall last. The rings develop a helical structure. Our results from the present study confirm some existing experimental observations made in the previous studies.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boldes, U. & Ferreri, J. C. 1973 Behavior of vortex rings in the vicinity of a wall. Phys. Fluids 16 (11), 20052006.CrossRefGoogle Scholar
Cerra, A. W. & Smith, C. R. 1983 Experimental observations of vortex ring interaction with the fluid adjacent to a surface. Tech. Rep. FM-4. Department of Mechanical Engineering and Mechanics, Lehigh University.Google Scholar
Chang, C. C. 1992 Potential flow and forces for incompressible viscous flow. Proc. R. Soc. Lond. A 437 (1901), 517525.Google Scholar
Chang, T. Y., Hertzberg, J. R. & Kerr, R. M. 1997 Three-dimensional vortex/wall interaction: entrainment in numerical simulation and experiment. Phys. Fluids 9 (1), 5766.CrossRefGoogle Scholar
Cheng, M. & Luo, L.-S. 2007 Characteristics of two-dimensional flow around a rotating circular cylinder near a plane wall. Phys. Fluids 19 (6), 063601.CrossRefGoogle Scholar
Cheng, M., Lou, J. & Lim, T. T. 2009 Motion of a vortex ring in a simple shear flow. Phys. Fluids 21 (8), 081701.CrossRefGoogle Scholar
Cheng, M., Yao, Q. & Luo, L.-S. 2006 Simulation of flow past a rotating circular cylinder near a plane wall. Intl J. Comput. Fluid Dyn. 20 (6), 391400.CrossRefGoogle Scholar
Chu, C. C., Wang, C. T. & Chang, C. C. 1995 A vortex ring impinging on a solid plane surface-vortex structure and surface force. Phys. Fluids A 7 (6), 13911401.CrossRefGoogle Scholar
Chu, C. C., Wang, C. T. & Hsieh, C. S. 1993 An experimental investigation of vortex motions near surfaces. Phys. Fluids A 5 (6), 662676.CrossRefGoogle Scholar
Doligaski, T. L., Smith, C. R. & Walker, J. D. A. 1994 Vortex interactions with walls. Annu. Rev. Fluid Mech. 26, 573616.CrossRefGoogle Scholar
Fabris, D., Liepmann, D. & Marcus, D. 1996 Quantitative experimental and numerical investigation of a vortex ring impinging on a wall. Phys. Fluids 8 (10), 26402649.CrossRefGoogle Scholar
He, X. & Luo, L.-S. 1997 a Lattice Boltzmann model for the incompressible Navier–Stokes equation. J. Stat. Phys. 88 (1/2), 927944.CrossRefGoogle Scholar
He, X. & Luo, L.-S. 1997 b A priori derivation of the lattice Boltzmann equation. Phys. Rev. E 55 (6), R6333R6336.Google Scholar
He, X. & Luo, L.-S. 1997 c Theory of lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56 (6), 68116817.Google Scholar
d'Humières, D. 1992 Generalized lattice-Boltzmann equations. In Rarefied Gas Dynamics: Theory and Simulations (ed. Shizgal, B. D. & Weave, D. P.), Progress in Astronautics and Aeronautics, vol. 159, pp. 450458. AIAA.Google Scholar
d'Humières, D., Ginzburg, I., Krafczyk, M., Lallemand, P. & Luo, L.-S. 2002 Multiple-relaxation-time lattice Boltzmann models in three dimensions. Phil. Trans. R. Soc. Lond. A 360 (1792), 437451.CrossRefGoogle ScholarPubMed
Junk, M. 2001 A finite difference interpretation of the lattice Boltzmann method. Numer. Methods Part. Differ. Equ. 17 (4), 383402.CrossRefGoogle Scholar
Junk, M. & Klar, A. 2000 Discretizations for the incompressible Navier–Stokes equations based on the lattice Boltzmann method. SIAM J. Sci. Comput. 22 (1), 119.CrossRefGoogle Scholar
Junk, M., Klar, A. & Luo, L.-S. 2005 Asymptotic analysis of the lattice Boltzmann equation. J. Comput. Phys. 210 (2), 676704.CrossRefGoogle Scholar
Kiya, K., Ohyama, M. & Hunt, J. C. R. 1986 Vortex pairs and rings interacting with shear-layer vortices. J. Fluid Mech. 172, 115.CrossRefGoogle Scholar
Lallemand, P. & Luo, L.-S. 2000 Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability. Phys. Rev. E 61 (6), 65466562.Google ScholarPubMed
Lallemand, P. & Luo, L.-S. 2003 Lattice Boltzmann method for moving boundaries. J. Comput. Phys. 184 (2), 406421.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Lim, T. T. 1989 An experimental study of a vortex ring interacting with an inclined wall. Exp. Fluids 7 (7), 453463.CrossRefGoogle Scholar
Lim, T. T. & Nickels, T. B. 1992 Instability and reconnection in the head-on collision of two vortex rings. Nature 357 (6375), 225227.CrossRefGoogle Scholar
Lim, T. T. & Nickels, T. B. 1995 Vortex rings. In Fluid Vortices: Fluid Mechanics and its Applications (ed. Green, S. I.), chapter IV, pp. 95153. Kluwer.CrossRefGoogle Scholar
Lim, T. T., Nickels, T. B. & Chong, M. S. 1991 A note on the cause of rebound in the head-on collision of a vortex ring with a wall. Exp. Fluids 12 (1/2), 4148.CrossRefGoogle Scholar
Liu, C. H. 2002 Vortex simulation of unsteady shear flow induced by a vortex ring. Comput. Fluids 31 (2), 183207.CrossRefGoogle Scholar
Lugt, H. J. 1983 Vortex Flow in Nature and Technology. Wiley.Google Scholar
Luton, J. A. & Ragab, S. A. 1997 The three-dimensional interaction of a vortex pair with a wall. Phys. Fluids 9 (10), 29672980.CrossRefGoogle Scholar
Mammetti, M., Verzicco, R. & Orlandi, P. 1999 The study of vortex ring/wall interaction for artificial nose improvement. ESAIM: Proc. 7, 258269.CrossRefGoogle Scholar
Maríe, S., Ricot, D. & Sagaut, P. 2009 Comparison between lattice Boltzmann method and Navier–Stokes high-order schemes for computational aeroacoustics. J. Comput. Phys. 228 (4), 10561070.CrossRefGoogle Scholar
Mussa, A., Asinari, P. & Luo, L.-S. 2009 Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders. J. Comput. Phys. 228 (4), 983999.CrossRefGoogle Scholar
Naguib, A. M. & Koochesfahani, M. M. 2004 On wall-pressure sources associated with the unsteady separation in a vortex-ring/wall interaction. Phys. Fluids 16 (7), 26132622.CrossRefGoogle Scholar
Orlandi, P. & Verzicco, R. 1993 Vortex rings impinging on walls: axisymmetric and three-dimensional simulations. J. Fluid Mech. 256, 615646.CrossRefGoogle Scholar
Peng, Y., Liao, W., Luo, L.-S. & Wang, L.-P. 2010 Comparison of the lattice Boltzmann and pseudo-spectral methods for decaying turbulence: low-order statistics. Comput. Fluids 39 (4), 568591.CrossRefGoogle Scholar
Saffman, P. G. 1979 The approach of a vortex pair to a plane surface in inviscid fluid. J. Fluid Mech. 92, 497503.CrossRefGoogle Scholar
Shariff, K. & Leonard, A. 1992 Vortex rings. Annu. Rev. Fluid Mech. 24, 235279.CrossRefGoogle Scholar
Soo, J. H. & Menon, S. 2004 Simulation of vortex dynamics in three-dimensional synthetic and free jets using the large-eddy lattice Boltzmann method. J. Turbul. 5, 032.Google Scholar
Swearingen, J. D., Crouch, J. D. & Handler, R. A. 1995 Dynamics and stability of a vortex ring impacting a solid boundary. J. Fluid Mech. 297, 128.CrossRefGoogle Scholar
Verhaeghe, F., Luo, L.-S. & Blanpain, B. 2009 Lattice Boltzmann modeling of microchannel flow in slip flow regime. J. Comput. Phys. 228 (1), 147157.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1994 Normal and oblique collisions of a vortex ring with a wall. Meccanica 29 (4), 383391.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 a A finite-difference scheme for three-dimensional incompressible flows in cylindrical coordinates. J. Comput. Phys. 123 (2), 402414.CrossRefGoogle Scholar
Verzicco, R. & Orlandi, P. 1996 b Wall/vortex-ring interactions. Appl. Mech. Rev. 49 (10), 447461.CrossRefGoogle Scholar
Walker, J. D. A., Smith, C. R., Cerra, A. W. & Doligaski, T. L. 1987 The impact of a vortex ring on a wall. J. Fluid Mech. 181, 99140.CrossRefGoogle Scholar
Yamada, H., Hochizuki, O., Yamabe, H. & Matsui, T. 1985 Pressure variation on a flat wall induced by an approaching vortex ring. J. Phys. Soc. Japan 54 (11), 41514160.CrossRefGoogle Scholar
Yu, D., Mei, R., Luo, L.-S. & Shyy, W. 2003 Viscous flow computations with the method of lattice Boltzmann equation. Prog. Aerosp. Sci. 39 (5), 329367.CrossRefGoogle Scholar