Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T07:42:38.237Z Has data issue: false hasContentIssue false

Numerical simulations of Lewis number effects in turbulent premixed flames

Published online by Cambridge University Press:  26 April 2006

D. C. Haworth
Affiliation:
Thermosciences Department. General Motors Research Laboratories. Warren. MI 48090, USA
T. J. Poinsot
Affiliation:
Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA Present address: Laboratoire EM2C, CNRS, Ecole Centrale de Paris, 92295 Chatenay-Malabry, Cedex, France.

Abstract

The structure of a premixed flame front propagating in a region of two-dimensional turbulence is investigated using full numerical simulation including heat release, variable properties, and one-step Arrhenius chemistry. The influence of reactant Lewis number (Le = ratio of thermal to species diffusivity) is reported for Le = 0.8, Le = 1.0, and Le = 1.2 flames. Local flame behaviour is described by comparing the local instantaneous turbulent flame structure (local consumption rate of reactants) to the steady one-dimensional laminar flame structure for the same thermochemical parameters. Statistics of flame front strain rates and curvature are calculated and global quantities of interest in modelling (flame surface area, mean reactant consumption rate per unit area of flame, and turbulent flame speed) are reported. Principal findings are: that probability density functions (p.d.f.s) of flame curvature are nearly symmetric about a near-zero mean; that the flame tends to align preferentially with extensive tangential strain rates; that the local flame structure of the non-unity Lewis number flames correlates more strongly with local flame curvature than with tangential strain rate; that the mean consumption rate per unit area is relatively insensitive to curvature and is controlled by the mean tangential strain rate; and, that more flame area is generated for Le < 1 than for Le > 1. Implications of the results for flamelet models of turbulent premixed combustion are discussed.

Type
Research Article
Copyright
© 1992 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abraham J., Williams, F. A. & Bracco F. V. 1985 A discussion of turbulent flame structure in premixed charges. SAE Paper no. 850345.
Ashurst W. T. 1990 Geometry of premixed flames in three-dimensional turbulence. Proc. 1990 Summer Program, Center for Turbulence Research, Stanford University & NASA Ames, pp. 245253.
Ashurst, W. T. & Barr P. K. 1983 Stochastic calculation of laminar wrinkled flame propagation via vortex dynamics. Combust. Sci. Technol 34, 227256.Google Scholar
Ashurst W. T., Peters, N. & Smooke M. D. 1987 Numerical simulation of turbulent flame structure with non-unity Lewis number. Combust. Sci. Technol. 53, 339375.Google Scholar
Ashurst W. T., Shivashinsky, G. I. & Yakhot V. 1988 Flame-front propagation in nonsteady hydrodynamic fields. Combust. Sci. Technol. 62, 273284.Google Scholar
Batchelor G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.
Becker H., Monkhouse P. B., Wolfrum J., Cant R. S., Bray K. N. C., Maly R., Pfister W., Stahl, G. & Warnatz J. 1990 Investigation of extinction in unsteady flames in turbulent combustion by 2D-LIF of OH radicals and flamelet analysis. 23rd Symp. (Intl) on Combust, pp. 817823. The Combustion Institute, Pittsburgh.Google Scholar
Blint R. J. 1988 Flammability limits for exhaust gas diluted flames. 22nd (Intl) on Combust. pp. 15471554. The Combustion Institute, Pittsburgh.Google Scholar
Blint R. J. 1991 Stretch in premixed laminar flames under IC engine conditions. Combust. Sci. Technol. 75, 115128.Google Scholar
Bracco F. V. 1988 Structure of flames in premixed-charge IC engines. Combust. Sci. Technol. 58, 209230.Google Scholar
Bray K. N. C. 1990 Studies of turbulent burning velocity Proc. R. Soc. Lond. A 431, 315335.Google Scholar
Bray, K. N. C. & Libby P. 1986 Passage times and flamelet crossing frequencies in premixed turbulent combustion. Combust. Sci. Technol. 47, 253274.Google Scholar
Candel S., Maistret E., Darabiha N., Poinsot T., Veynante, D. & Lacas F. 1988 Experimental and numerical studies of turbulent ducted flames. Marble Symp. CALTECH.Google Scholar
Candel, S. M. & Poinsot T. J. 1990 Flame stretch and the balance equation for the flame area. Combust. Sci. Technol. 70, 115.Google Scholar
Cant, R. S. & Bray K. N. C. 1988 Strained laminar flamelet calculations of premixed turbulent combustion in a closed vessel. 22nd Symp. (Intl) on Combust. pp. 791799. The Combustion Institute, Pittsburgh.Google Scholar
Cant R. S., Pope, S. B. & Bray K. N. C. 1990a Modelling of flamelet surface-to-volume ratio in turbulent premixed combustion. 23rd Symp. (Intl) on Combust. pp. 809815. The Combustion Institute, Pittsburgh.Google Scholar
Cant R. S., Rutland, C. J. & Trouvé A. 1990b Statistics for laminar modeling. Proc. 1990 Summer Program, Center for Turbulence Research, Stanford University & NASA Ames, pp. 271279.
Chelliah, H. K. & Williams F. A. 1987 Asymptotic analysis of two-reactant flames with variable properties and Stefan–Maxwell transport. Combust. Sci. Technol. 51, 129144.Google Scholar
Clavin P. 1985 Dynamic behavior of premixed flame fronts in laminar and turbulent flows. Prof. Energy Combust. Sci. 11, 159.Google Scholar
El Tahry S. H. 1990 A turbulence combustion model for premixed charge engines. Combust. Flame 79, 122140.Google Scholar
El Tahry, S. H., Rutland, C. J. & Ferziger, J. H. 1991 Structure and propagation speeds of turbulent premixed flames – a numerical study. Combust. Flame 83, 155173.Google Scholar
Ghoniem, A. F. & Krishnan A. 1988 Origin and manifestation of flow–combustion interactions in a premixed shear layer. 22nd Symp. (Intl) on Combust. pp. 665675. The Combustion Institute, Pittsburgh.Google Scholar
Girimaji, S. S. & Pope S. B. 1992 Propagating surfaces in isotropic turbulence. J. Fluid Mech. 234, 247277.Google Scholar
Herring J. R., Orszag S. A., Kraichnan, R. H. & Fox D. G. 1974 Decay of two-dimensional homogeneous turbulence. J. Fluid Mech. 66, 417444.Google Scholar
Hinze J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.
Kerstein A. R., Ashurst, W. T. & Williams F. A. 1988 Field equations for interface propagation in an unsteady homogeneous flowfield Phys. Rev. A 37, 27282731.Google Scholar
Lee, T.-W., North, G. L. & Santavicca, D. A. 1991 Curvature and orientation statistics of turbulent premixed flame fronts. Combust. Sci. Technol. (submitted). Also presented at Spring 1991 meeting of the Western States Section of the Combustion Institute.Google Scholar
Lele S. 1990 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. (submitted).Google Scholar
Lesieur M. 1987 Turbulence in Fluids. Martinus Nijhoff.
Maistret E., Darabiha N., Poinsot T., Veynante D., Lucas F., Candel, S. & Esposito E. 1989 Recent developments in the coherent flame description of turbulent combustion (ed. A. Dervieux & B. Larrouturou). Lecture Notes in Physics. Numerical Combustion, vol. 351.
Mantzaras J., Felton, P. G. & Bracco F. V. 1988 Three-dimensional visualization of premixed-charge engine flames. SAE Paper no. 881635.
Meneveau, C. & Poinsot T. 1991 Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86, 311332.Google Scholar
Poinsot T. 1991 Flame ignition in a premixed turbulent flow. Center for Turbulence Res. Ann. Res. Briefs, Center for Turbulence Research, Stanford University & NASA Ames, pp. 122.
Poinsot T., Echekki, T. & Mungal M. G. 1992 A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 4555.Google Scholar
Poinsot, T. & Lele S. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104129. Also CTR Manuscript 102, December 1989, Center for Turbulence Research, Stanford University.Google Scholar
Poinsot T., Veynante, D. & Candel S. 1990 Diagrams of premixed turbulent combustion based on direct simulation. 23rd Symp. (Intl) on Combust., pp. 613619. The Combustion Institute, Pittsburgh. Also CTR Manuscript 110, June 1990, Center for Turbulence Research, Stanford University.Google Scholar
Poinsot T., Veynante, D. & Candel S. 1991 Quenching processes and premixed turbulent combustion diagrams. J. Fluid Mech. 228, 561606.Google Scholar
Pope S. B. 1988 Evolution of surfaces in turbulence. Intl J. Engng Sci. 26, 445469.Google Scholar
Pope, S. B. & Cheng W. 1988 The stochastic flamelet model of turbulent premixed combustion. 22nd Symp. (Intl) on Combust. pp. 781789. The Combustion Institute. Pittsburgh.
Rutland C. J., Ferziger, J. H. & El Tahry S. H. 1990 Full numerical simulation and modeling of turbulent premixed flames. 23rd Symp. (Intl) on Combust., pp. 621627. The Combustion Institute, Pittsburgh.Google Scholar
Rutland, C. & Trouvé A. 1990 Premixed flame simulations for nonunity Lewis numbers. Proc. 1990 Summer Program, Center for Turbulence Research, Stanford University & NASA Ames, pp. 299309.
Tennekes, H. & Lumley J. L. 1972 A First Course in Turbulence. MIT.
Williams F. A. 1985 Combustion Theory, 2nd edn. Benjamin Cummings.
Wray A. 1990 Minimal storage time-advancement schemes for spectral methods. J. Comput. Phys. (submitted).Google Scholar
Wu M. S., Kwon S., Driscoll, J. F. & Faeth G. M. 1990 Turbulent premixed hydrogen/air flames at high Reynolds numbers. Combust. Sci. Technol. 73, 327350.Google Scholar
Yeung P. K., Girimaji, S. S. & Pope S. B. 1990 Straining and scalar dissipation on material surfaces in turbulence: implications for flamelets. Combust. Flame. 79, 340365.Google Scholar
Ziegler G. F. W., Zettlitz A., Meinhardt P., Herweg R., Maly, R. & Pfister W. 1988 Cycle-resolved two-dimensional flame visualization in a spark-ignition engine. SAE Paper no. 881634.