Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T07:27:26.320Z Has data issue: false hasContentIssue false

Numerical simulation of viscous, nonlinear and progressive water waves

Published online by Cambridge University Press:  23 September 2009

ASHISH RAVAL*
Affiliation:
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
XIANYUN WEN
Affiliation:
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK The Centre for Computational Fluid Dynamics, University of Leeds, Leeds LS2 9JT, UK
MICHAEL H. SMITH
Affiliation:
Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
*
Email address for correspondence: [email protected]

Abstract

A numerical simulation is performed to study the velocity, streamlines, vorticity and shear stress distributions in viscous water waves with different wave steepness in intermediate and deep water depth when the average wind velocity is zero. The numerical results present evidence of ‘clockwise’ and ‘anticlockwise’ rotation of the fluid at the trough and crest of the water waves. These results show thicker vorticity layers near the surface of water wave than that predicted by the theories of inviscid rotational flow and the low Reynolds number viscous flow. Moreover, the magnitude of vorticity near the free surface is much larger than that predicted by these theories. The analysis of the shear stress under water waves show a thick shear layer near the water surface where large shear stress exists. Negative and positive shear stresses are observed near the surface below the crest and trough of the waves, while the maximum positive shear stress is inside the water and below the crest of the water wave. Comparison of wave energy decay rate in intermediate depth and deep water waves with laboratory and theoretical results are also presented.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barth, T. J. & Jesperson, D. C. 1989 The design and application of upwind schemes on unstructured meshes. AIAA Paper 89–0366.CrossRefGoogle Scholar
Behroozi, F. 2004 Fluid viscosity and the attenuation of surface waves: a derivation based on conservation of energy. Eur. J. Phys. 25, 115122.CrossRefGoogle Scholar
Chen, C. J. & Chen, H. C. 1982 The finite-analytic method. Tech. Rep. IIHR Rep. 232-IV, Iowa Institute of Hydraulic Research, University of Iowa.Google Scholar
Chen, C. J. & Chen, H. C. 1984 Finite analytical numerical method for unsteady two-dimensional Navier–Stokes equations. J. Comput. Phys. 53, 209222.CrossRefGoogle Scholar
Chen, B. F. & Nokes, R. 2005 Time-independent finite difference analysis of fully non-linear and viscous fluid sloshing in a rectangular tank. J. Comput. Phys. 209, 4781.CrossRefGoogle Scholar
Cheung, T. K. & Street, R. L. 1988 Turbulence layers in the water at an air–water interface. Part A. J. Fluid Mech. 194, 133151.CrossRefGoogle Scholar
Constantin, A. 2001 On the deep water wave motion. J. Phys. A: Math. Gen. 194, 14051417.CrossRefGoogle Scholar
Constantin, A., Sattinger, D. & Strauss, W. 2006 Variational formulations for steady water waves with vorticity. J. Fluid Mech. 548, 151163.CrossRefGoogle Scholar
Corte, C. & Grilli, S. T. 2006 Numerical modelling of extreme wave slamming on cylindrical offshore support structures. In Proceedings of the Sixteenth International Offshore and Polar Engineering Conference, San Francisco, CA.Google Scholar
Dabiri, D. & Gharib, M. 1997 Experimental investigation of the vorticity generation within a spilling water wave. J. Fluid Mech. 330, 113139.CrossRefGoogle Scholar
Dalrymple, R. A. & Kirby, T. J. 1986 Water waves over ripples. J. Waterway Port Coast. Ocean Engng 112, 309319.CrossRefGoogle Scholar
Dalrymple, R. A. & Rogers, B. D. 2005 Numerical modeling of water waves with the SPH method. J. Coast. Engng 53, 141147.CrossRefGoogle Scholar
Darwish, M. S. & Moukalled, F. 2003 TVD Schemes for unstructured grids. Intl J. Heat Mass Transfer 46, 599611.CrossRefGoogle Scholar
Dean, R. G. & Dalrymple, R. A. 1984 Water Wave Mechanics for Engineers and Scientists. Prentice-Hall.Google Scholar
Dong, C. M. & Huang, C. J. 2004 Generation and propagation of water waves in a two-dimensional numerical viscous wave flume. J. Waterway Port Coast. Ocean Engng ASCE 130 (3), 143153.CrossRefGoogle Scholar
Drew, D. A. & Passman, S. L. 1999 Theory of Multicomponent Fluids. Springer.CrossRefGoogle Scholar
Duncan, J. H., Philomin, V., Behres, M. & Kimmel, J. 1994 The formation of spilling breaking water waves. Phys. Fluids 6, 25582560.CrossRefGoogle Scholar
Dutykh, D. & Dias, F. 2007 Viscous potential free-surface flows in a fluid layer of finite depth. C. R. Acad. Sci. Paris Ser. I 345, 113118.CrossRefGoogle Scholar
Fulgosi, M., Lakehal, D., Banerjee, S. & De Angelis, V. 2003 Direct numerical simulation of turbulence in a sheared air–water flow with a deformable interface. J. Fluid Mech. 482, 319345.CrossRefGoogle Scholar
Gerstner, F. J. 1802 Theorie der Wellen, Abh. d. k. bhom. Ges. D. Wiss. Reprinted in Ann. der Physik 1809 32, 412–440.Google Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.CrossRefGoogle Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.CrossRefGoogle Scholar
Hou, T. Y., Lowengrub, J. S. & Shelley, M. J. 2001 Boundary integral methods for multicomponent fluids and multiphase materials. J. Comput. Phys. 169, 302323.CrossRefGoogle Scholar
Huang, C. J., Zhang, E. C. & Lee, J. F. 1988 Numerical simulation of nonlinear viscous wavefelds generated by a piston-type wavemaker. J. Engng Mech. ASCE 123 (10), 11101120.Google Scholar
Hur, D. S. & Mizutani, N. 2003 Numerical estimation of the wave forces acting on a three-dimensional body on submerged breakwater. Coast. Engng 47, 329345.CrossRefGoogle Scholar
Hutchinson, B. R. & Raithby, G. D. 1986 A multigrid method based on the additive correction strategy. Numer. Heat Transfer 9, 511537.CrossRefGoogle Scholar
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155, 96127.CrossRefGoogle Scholar
Jamet, D., Lebaigue, O., Coutris, N. & Delhaye, J. M. 2001 The second gradient method for the direct numerical simulation of liquid–vapor flows with phase change. J. Comput. Phys. 169, 624651.CrossRefGoogle Scholar
Kleinstreuer, C. 2003 Two-Phase Flow, Theory and Applications. Taylor & Francis.Google Scholar
Kinsman, B. 1965 Wind Waves: Their Generation and Propagation on the Ocean Surface. Prentice Hall.Google Scholar
Lamb, H. 1932 Hydrodynamics. Cambridge University Press.Google Scholar
Li, B. & Fleming, C. A. 2001 Three-dimensional model of Navier–Stokes equations for water waves. J. Waterway Port Coast. Ocean Engng 127, 1625.CrossRefGoogle Scholar
Lin, P. 2008 Numerical Modeling of Water Waves. Taylor & Francis.CrossRefGoogle Scholar
Lin, J. C. & Rockwell, D. 1995 Evolution of a quasi-steady breaking wave. J. Fluid Mech. 302, 2944.CrossRefGoogle Scholar
Liu, P. L.-F. & Lin, P. 1997 A numerical model for breaking waves: the volume of fluid method. Tech. Rep. CACR-97-02. Centre for Applied Coastal Research, University of Delaware.Google Scholar
Liu, P. L.-F. & Orfila, A. 2004 Viscous effects on transient long-wave propagation. J. Fluid Mech. 520, 8392.CrossRefGoogle Scholar
Longuet-Higgins, M. S. 1992 Capillary rollers and bores. J. Fluid Mech. 240, 659679.CrossRefGoogle Scholar
Lundgren, T. & Koumoutsakos, P. 1999 On the generation of vorticity at a free surface. J. Fluid Mech. 382, 351366.CrossRefGoogle Scholar
Maronnier, V., Picasso, M. & Rappaz, J. 2003 Numerical simulation of three-dimensional free surface flows. Intl J. Numer. Methods Fluids 42, 697716.CrossRefGoogle Scholar
Milne-Thomson, L. M. 1994 Theoretical Hydrodynamics. Dover.Google Scholar
Mitsuyasu, H. & Honda, T. 1982 Wind-induced growth of water waves. J. Fluid Mech. 123, 425442.CrossRefGoogle Scholar
Monaghan, J. J. 1994 Simulating free surface flows with SPH. J. Comput. Phys. 110, 399406.CrossRefGoogle Scholar
Monaghan, J. J. & Kos, A. 1999 Solitary waves on a Cretan beach. J. Waterway Port Coast. Ocean Engng 125 (3), 145154.CrossRefGoogle Scholar
Park, J. C., Kim, M. H., Miyata, H. & Chun, H. H 2003 Fully nonlinear numerical wave tank (NWT) simulation and wave run-up prediction around 3-D structures. Ocean Engng 30, 19691996.CrossRefGoogle Scholar
Peirson, W. L, Garcia, A. W. & Pells, S. E. 2003 Water wave attenuation due to opposing wind. J. Fluid Mech. 487, 345365.CrossRefGoogle Scholar
Raw, M. 1996 Robustness of coupled algebraic multigrid for the Navier–Stokes equations. AIAA Paper 96-0297.CrossRefGoogle Scholar
Rhie, C. M. & Chow, W. L. 1983 Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21, 15251532.CrossRefGoogle Scholar
Saffman, P. G. 1981 Dynamics of vorticity. J. Fluid Mech. 106, 4958.CrossRefGoogle Scholar
Scardovelli, R. & Zaleski, S. 1999 Direct Numerical Simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567603.CrossRefGoogle Scholar
Schneider, G. E. & Raw, M. J. 1987 Control volume finite-element method for heat transfer and fluid flow using collocated variables −1. Computational procedure. Numer. Heat Transfer 26, 367380.Google Scholar
Sethian, J. A. 1999 Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science. Cambridge University Press.Google Scholar
Teles Da Silva, A. F. & Peregrine, D. H. 1988 Steep, steady surface waves on water of finite depth with constant vorticity. J. Fluid Mech. 195, 281302.CrossRefGoogle Scholar
Thais, L. & Magnaudet, J. 1995 A triple decomposition of the fluctuation motion below laboratory wind water waves. J. Geophys. Res. 100, 741755.CrossRefGoogle Scholar
Thomas, T. G., Leslie, D. C. & Williams, J. J. R. 1995 Free surface simulations using a conservative 3D code. J. Comput. Phys. 116, 5268.CrossRefGoogle Scholar
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y. J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708759.CrossRefGoogle Scholar
Tsai, W. T. & Yue, D. K. P. 1996, Computation of nonlinear free-surface flows. Annu. Rev. Fluid Mech. 28, 249278.CrossRefGoogle Scholar
Vanden-Broeck, J. M. 1996 Periodic waves with constant vorticity in water of infinite depth. IMA J. Appl. Math. 56, 207217.CrossRefGoogle Scholar
Wang, J. & Joseph, D. D. 2006 Purely irrotational theories of the effect of the viscosity on the decay of free gravity waves. J. Fluid Mech. 559, 461472.CrossRefGoogle Scholar
Zwart, J. P. 2005 Numerical Modelling of free surface and cavitating flows. In VKI Lecture Series: Industrial Two-Phase Flow CFD. von-Karman Institute lecture series 2004-2005; 2004. p. 25.Google Scholar
Zwart, J. P., Burns, D. A. & Galpin, F. P. 2007 Coupled algebraic multigrid for free surface flow simulations. In Proceedings of Twenty-Sixth Intl Conf. on Offshore Mechanics & Arctic Engineering, OMAE 2007-29080, San Diego, USA.Google Scholar
Zwart, J. P., Scheuerer, M. & Bogner, M. 2003 Free surface modelling of an impinging jet. In ASTAR International Workshop on Advanced Numerical Methods for Multidimentional Simulation of Two-Phase Flow, Garching, Germany.Google Scholar