Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-04T03:30:47.639Z Has data issue: false hasContentIssue false

The numerical simulation of the steady movement of a fluid meniscus in a capillary tube

Published online by Cambridge University Press:  19 April 2006

James Lowndes
Affiliation:
Department of Mathematics, University of Manchester, Manchester M13 9PL Present address: Ferranti Computer Systems Ltd., Bird Hall Lane, Cheadle Heath, Stock-port SK3 0XQ.

Abstract

The steady movement of a fluid meniscus in a circular capillary tube is analysed by means of finite-element numerical simulation for a range of values of contact angles and contact-line velocities with minute slippage of the fluid on the tube wall, thus relaxing the conventional no-slip boundary condition. The resulting flow field does not produce unbounded forces at contact line, contrary to that with the no-slip condition. The unknown meniscus shape is determined by an iterative scheme in which the imbalance in the normal-stress boundary condition is the basis for improving the shape. Comparison of the numerical results found here and the experimental results of a number of investigators suggests the possibility that the contact angle does not vary with contact-line velocity.

Type
Research Article
Copyright
© 1980 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Chung, T. J. 1978 Finite Element Analysis in Fluid Mechanics. McGraw-Hill.
Desai, C. S. & Abel, J. F. 1972 Introduction to the Finite Element Method. Reinhold: Van Nostrand.
Dussan V. E. B. 1976 J. Fluid Mech. 77, 665.
Dussan V. E. B. & Davis, S. H. 1974 J. Fluid Mech. 65, 71.
Ergatoudis, I., Irons, B. M. & Zienkiewicz, O. C. 1968 Int. J. Solids Structures 4, 31.
Hansen, R. J. & Toong, T. Y. 1971a J. Colloid Interface Sci. 36, 410.
Hansen, R. J. & Toong, T. Y. 1971b J. Colloid Interface Sci. 37, 196.
Hocking, L. M. 1976 J. Fluid Mech. 76, 801.
Hocking, L. M. 1977 J. Fluid Mech. 79, 209.
Hoffman, R. L. 1975 J. Colloid Interface Sci. 50, 228.
Huh, C. & Mason, S. G. 1977 J. Fluid Mech. 81, 401.
Huh, C. & Scriven, L. E. 1971 J. Colloid Interface Sci. 35, 85.
Moffatt, H. K. 1964 J. Fluid Mech. 18, 1.
Oden, J. T., Zienkiewicz, O. C., Gallagher, R. H. & Taylor, C. 1974 Finite Element Methods in Flow Problems. University of Alabama Press, Huntsville.
Orr, F. M. & Scriven, L. E. 1978 J. Fluid Mech. 84, 145.
Rose, W. & Heins, R. W. 1962 J. Colloid Sci. 17, 39.
Schneider, G. E., Raithby, G. D. & Yovanovich, M. M. 1978 In Numerical Methods in Laminar and Turbulent Flow (ed. C. Taylor, K. Morgan & C. A. Brebbia), p. 89. Plymouth: Pentech.
Taylor, C., Morgan, K. & Brebbia, C. A. 1978 Numerical Methods in Laminar and Turbulent Flow. Plymouth: Pentech.
Zienkiewicz, O. C. 1977 The Finite Element Method. McGraw-Hill.