Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T17:53:55.394Z Has data issue: false hasContentIssue false

Numerical simulation of fully developed sinusoidal and pulsatile (physiological) flow in curved tubes

Published online by Cambridge University Press:  21 April 2006

L.-J. Chang
Affiliation:
Department of Chemical Engineering and The Bioengineering Program, The Pennsylvania State University, 104 Fenske Laboratory, University Park, PA 16802
J. M. Tarbell
Affiliation:
Department of Chemical Engineering and The Bioengineering Program, The Pennsylvania State University, 104 Fenske Laboratory, University Park, PA 16802

Abstract

Numerical solutions of the Navier–Stokes equations for fully developed, sinusoidal and pulsatile flows in curved tubes are presented for conditions not accessible to analytical perturbation methods. Simulations of physiological pulsatile flows in the aortic arch reveal a wide variety of interesting flow phenomena, including: (1) complex secondary flows with up to seven vortices in the half-tube; (2) cascaded vortex structures with vortices embedded within vortices; (3) strong secondary flows with associated wall shear stress nearly as large as the axial component; (4) reversal of axial-flow direction at the inside wall; (5) peak axial wall shear stress at the inside wall; (6) highest r.m.s. wall shear stress at the inside wall; and (7) oscillatory impedance, which is accurately described by straight-tube theory.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Austin, L. R. & Seader, J. D. 1973 AIChE J. 19, 85.
Berger, S. A., Talbot, L. & Yao, L.-S. 1983 Ann. Rev. Fluid Mech. 15, 461.
Bertelsen, A. F. 1974 An investigation of the oscillating viscous flow in a curved pipe with special emphasis on low Reynolds number secondary streaming effects. Rep. No. 67, Dept of Physics, University of Bergen, Norway.
Blennerhassett, P. 1976 Secondary motion and diffusion in unsteady flow in a curved pipe. Ph.D. Thesis. Imperial College, London.
Brech, R. & Bellhouse, B. J. 1973 Cardiovasc. Res. 7, 593.
Caro, C. G., Fitz-Gerald, J. M. & Schroter, R. C. 1971 Proc. R. Soc. Lond. B 177, 109.
Chandran, K. B., Swanson, W. M., Ghista, D. N. & Vayo, H. W. 1974 Ann. Biomed. Engng 2, 392.
Chandran, K. B., Hosey, R. R., Ghista, D. N. & Vayo, V. W. 1979 J. Biomech. Engng 101, 114.
Chandran, K. B. & Yearwood, T. L. 1981 J. Fluid Mech. 111, 59.
Dean, W. R. 1927 Phil. Mag. 4, 208.
Fry, D. L. 1968 Circ. Res. 22, 165.
Fry, D. L. 1969 Circ. Res. 24, 93.
Kang, S. G. & Tarbell, J. M. 1983 J. Biomech. Engng 105, 275.
Lin, J. Y. & Tarbell, J. M. 1980 J. Fluid Mech. 100, 623.
Lyne, W. H. 1970 J. Fluid Mech. 45, 13.
Naumann, A. & Schmid-schonbein, H. 1983 In Fluid Dynamics as a Localizing Factor for Altherosclerosis (ed. G. Schettler). Springer.
Nerem, R. M. & Cornhill, J. F. 1980 J. Biomech. Engng 102, 181.
Nerem, R. M. 1981 In Structure and Function of the Circulation Vol. 2 (ed. Schwartz). Plenum.
Patankar, S. V., Pratap, V. S. & Spalding, D. B. 1974 J. Fluid Mech. 62, 539.
Pedley, T. J. 1980 The Fluid Mechanics of Large Blood Vessels. Cambridge University Press.
Rabadi, N. J., Simon, H. A. & Chow, J. C. F. 1980 Numer. Heat Transfer 3, 225.
Rodkiewicz, C. M. 1975 J. Biomech. Engng 8, 149.
Simon, H. A., Chang, M. H. & Chow, J. C. F. 1977 J. Heat Transfer 99, 590.
Singh, M. P., Singha, P. C. & Agarawal, M. 1978 J. Fluid Mech. 87, 97.
Smith, F. T. 1975 J. Fluid Mech. 71, 15.
Tabot, L. & Gong, K. O. 1983 J. Fluid Mech. 127, 1.
Tarbell, J. M. & Samuels, M. R. 1973 Chem. Engng J. 5, 117.
Texon, M. 1980 Hemodynamic Basis of Atherosclerosis. Hemisphere.
Womersley, J. R. 1955 Phil. Mag. 46 (7), 199.
Yearwood, T. L. & Chandran, K. B. 1984 J. Biomech. 15, 683.
Zalosh, R. G. & Nelson, W. G. 1973 J. Fluid Mech. 59, 693.