Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T03:17:31.682Z Has data issue: false hasContentIssue false

Numerical simulation of Faraday waves

Published online by Cambridge University Press:  10 September 2009

NICOLAS PÉRINET
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), Centre National de la Recherche Scientifique (CNRS), UMR 7636, Université Paris 6 et Paris 7, 10 rue Vauquelin, 75231 Paris Cedex 5, France
DAMIR JURIC
Affiliation:
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI), Centre National de la Recherche Scientifique (CNRS), UPR 3251, BP133, 91403 Orsay Cedex, France
LAURETTE S. TUCKERMAN*
Affiliation:
Laboratoire de Physique et Mécanique des Milieux Hétérogènes (PMMH), Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), Centre National de la Recherche Scientifique (CNRS), UMR 7636, Université Paris 6 et Paris 7, 10 rue Vauquelin, 75231 Paris Cedex 5, France
*
Email address for correspondence: [email protected]

Abstract

We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier–Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar & Tuckerman (J. Fluid Mech., vol. 279, 1994, p. 49). The finite-amplitude results are compared with the experiments of Kityk et al (Phys. Rev. E, vol. 72, 2005, p. 036209). In particular, we reproduce the detailed spatio-temporal spectrum of both square and hexagonal patterns within experimental uncertainty. We present the first calculations of a three-dimensional velocity field arising from the Faraday instability for a hexagonal pattern as it varies over its oscillation period.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bechhoefer, J., Ego, V., Manneville, S. & Johnson, B. 1995 An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid. Mech. 288, 325350.CrossRefGoogle Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond., Ser. A 225, 505515.Google Scholar
Besson, T., Edwards, W. S. & Tuckerman, L. S. 1996 Two-frequency parametric excitation of surface waves. Phys. Rev. E 54, 507513.CrossRefGoogle ScholarPubMed
Beyer, J. & Friedrich, R. 1995 Faraday instability: linear analysis for viscous fluids. Phys. Rev. E 51, 11621168.CrossRefGoogle ScholarPubMed
Binks, D., Westra, M.-T. & van der Water, W. 1997 Effect of depth on the pattern formation of Faraday waves. Phys. Rev. Lett. 79, 50105013.CrossRefGoogle Scholar
Brackbill, J. U., Kothe, D. B. & Zemach, C. 1992 A continuum method for modelling surface tension. J. Comput. Phys. 100, 335354.CrossRefGoogle Scholar
Cerda, E. A. & Tirapegui, E. L. 1998 Faraday's instability in viscous fluid. J. Fluid Mech. 368, 195228.CrossRefGoogle Scholar
Chen, P. 2002 Nonlinear wave dynamics in Faraday instabilities. Phys. Rev. E 65, 036308.CrossRefGoogle ScholarPubMed
Chen, P. & Viñals, J. 1999 Amplitude equation and pattern selection in Faraday waves. Phys. Rev. E 60, 559570.CrossRefGoogle ScholarPubMed
Chen, P. & Wu, K.-A. 2000 Subcritical bifurcations and nonlinear balloons in Faraday waves. Phys. Rev. Lett. 85, 38133816.CrossRefGoogle ScholarPubMed
Chorin, A. J. 1968 Numerical simulation of the Navier–Stokes equations. Math. Comput. 22, 745762.CrossRefGoogle Scholar
Christiansen, B., Alstrøm, P. & Levinsen, M. T. 1992 Ordered capillary-wave states: quasicrystals, hexagons, and radial waves. Phys. Rev. Lett. 68, 21572160.CrossRefGoogle Scholar
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.CrossRefGoogle Scholar
Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299340.Google Scholar
Goda, K. 1979 A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows. J. Comput. Phys. 30, 7695.CrossRefGoogle Scholar
Guermond, J. L., Minev, P. & Shen, J. 2006 An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Engng 195, 60116045.CrossRefGoogle Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182.CrossRefGoogle Scholar
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201225.CrossRefGoogle Scholar
Huepe., C., Ding, Y., Umbanhowar, P. & Silber, M. 2006 Forcing function control of Faraday wave instabilities in viscous shallow fluids. Phys. Rev. E 73, 16310.CrossRefGoogle ScholarPubMed
Kityk, A. V., Embs, J., Menkhonoshin, V. V. & Wagner, C. 2005 Spatiotemporal characterization of interfacial Faraday waves by means of a light absorption technique. Phys. Rev. E 72, 036209.CrossRefGoogle ScholarPubMed
Kityk, A. V., Embs, J., Menkhonoshin, V. V. & Wagner, C. 2009 Erratum: spatiotemporal characterization of interfacial Faraday waves by means of a light absorption technique [PRE 72, 036209 (2005)]. submitted Phys. Rev. E 79, 029902 (E) (2009).CrossRefGoogle Scholar
Kudrolli, A. & Gollub, J. P. 1996 Patterns and spatiotemporal chaos in parametrically forced surface waves: a systematic survey at large aspect ratio. Physica D 97, 133154.CrossRefGoogle Scholar
Kudrolli, A., Pier, B. & Gollub, J. P. 1998 Superlattice patterns in surface waves. Physica D 123, 99111.CrossRefGoogle Scholar
Kumar, K. 1996 Linear theory of Faraday instability in viscous fluids. Proc. R. Soc. Lond. A 452, 11131126.Google Scholar
Kumar, K. & Tuckerman, L. S. 1994 Parametric instability of the interface between two fluids. J. Fluid. Mech. 279, 4968.CrossRefGoogle Scholar
Lioubashevski, O., Arbell, H. & Fineberg, J. 1996 Dissipative solitary states in driven surface waves. Phys. Rev. Lett. 76, 39593962.CrossRefGoogle ScholarPubMed
Müller, H. W. 1993 Periodic triangular patterns in the Faraday experiment. Phys. Rev. Lett. 71, 32873290.CrossRefGoogle ScholarPubMed
Müller, H. W., Wittmer, H., Wagner, C., Albers, J. & Knorr, K. 1997 Analytic stability theory for Faraday waves and the observation of the harmonic surface response. Phys. Rev. Lett. 78, 23572360.CrossRefGoogle Scholar
Murakami, Y. & Chikano, K. 2001 Two-dimensional direct numerical simulation of parametrically excited surface waves in viscous fluid. Phys. Fluids 13, 6574.CrossRefGoogle Scholar
O'Connor, N. L. 2008 The complex spatiotemporal dynamics of a shallow fluid layer. Master's thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
Osher, S. & Sethian, J. 1988 Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79, 1249.CrossRefGoogle Scholar
Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220252.CrossRefGoogle Scholar
Porter, J., Topaz, C. M. & Silber, M. 2004 Pattern control via multi-frequency parametric forcing. Phys. Rev. Lett. 93, 034502.CrossRefGoogle Scholar
Rayleigh, Lord 1883 a On maintained vibrations. Phil. Mag. 15, 229235. Reprinted in Scientific Papers, vol. 2, 1900, pp. 188–193. Cambridge.CrossRefGoogle Scholar
Rayleigh, Lord 1883 b On the crispations of fluid resting upon a vibrating support. Phil. Mag. 16, 5058. Reprinted in Scientific Papers, vol. 2, 1900, pp. 212–219. Cambridge.CrossRefGoogle Scholar
Rucklidge, A. M. & Silber, M. 2009 Design of parametrically forced patterns and quasipatterns. SIAM J. Appl. Dyn. Syst. 8, 298347.CrossRefGoogle Scholar
Saad, Y. 1996 Iterative Methods for Sparse Linear Systems. SIAM Publishing.Google Scholar
Shu, C. W. & Osher, S. 1989 Efficient implementation of essentially non-oscillatory shock capturing schemes, II. J. Comput. Phys. 83, 3278.CrossRefGoogle Scholar
Skeldon, A. C. & Guidoboni, G. 2007 Pattern selection for Faraday waves in an incompressible viscous fluid. SIAM J. Appl. Math. 67, 10641100.CrossRefGoogle Scholar
Sussman, M., Fatemi, E., Smereka, P. & Osher, S. 1998 An improved level set method for incompressible two-phase flows. Comput. Fluids 27, 663680.CrossRefGoogle Scholar
Temam, R. 1968 Une méthode d'approximation de la solution des équations de Navier–Stokes. Bull. Soc. Math. France 96, 115152.CrossRefGoogle Scholar
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y.-J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708759.CrossRefGoogle Scholar
Ubal, S., Giavedoni, M. D. & Saita, F. A. 2003 A numerical analysis of the influence of the liquid depth on two-dimensional Faraday waves. Phys. Fluids 15, 30993113.CrossRefGoogle Scholar
Valha, J., Lewis, J. S. & Kubie, J. 2002 A numerical study of the behaviour of a gas–liquid interface subjected to periodic vertical motion. Intl J. Numer. Meth. Fluids 40, 697721.CrossRefGoogle Scholar
Vega, J. M., Knobloch, E., Martel, C. 2001 Nearly inviscid Faraday waves in annular containers of moderately large aspect ratio. Physica D 154, 313336.CrossRefGoogle Scholar
Zhang, W. & Viñals, J. 1997 Pattern formation in weakly damped parametric surface waves. J. Fluid Mech. 336, 301330.CrossRefGoogle Scholar

Perinet et al. supplementary movie

Movie 1. Three dimensional numerical simulation of the hexagonal Faraday wave pattern during one subharmonic period which is the fundamental period of patterns occuring within the Faraday experiment. The simulation parameters match those in the experiment of Kityk et al. (2005) where two superposed fluids are shaken vertically with a forcing acceleration a=38.0 m/s2 and frequency ω/2π=12 Hz (period T=0.0833 s). For the lower fluid ρ1 =1346 kg/m3, μ1=7.2 mPa s. For the upper fluid ρ2=949 kg/m3, μ2=20 mPa s. The surface tension at the interface is σ=35 mN/m, the total height of the container in z is 1.0 cm, and the mean height of the interface is 1.6 mm. The Floquet analysis for these parameters yields a critical wavelength of λc =2π/kc=13.2 mm. The Bond number Bo=|ρ12| g /(σ kc2)=0.49 and the Reynolds numbers for the lower and upper fluids are Re11/(μ1kc2 T)=9.9 and Re22/(μ2kc2 T)=2.52 respectively. The horizontal dimensions of the calculation domain 2λc/√3 in x and 2λc in y support one spatial hexagonal period and the numerical grid resolution is 58×100×180 in the x,y,z directions respectively. For clarity each horizontal direction shown is twice that of the calculation domain. The movie begins when the interface has reached its maximum height exhibiting large peaks (up hexagon structure seen in figure 10c in Kityk et al. 2005) which are beginning to collapse. Although the interface never becomes entirely flat, its amplitude goes through a minimum; during which its structure becomes more complex. At this time, the critical modes kc compete with modes of higher wavenumber which are temporarily of similar magnitude. The initial peaks continue their descent to form wide flat craters (down hexagon structure in figure 10a in Kityk et al.) whose floors are only 0.1mm deep. The rims of these craters now collapse inwards, forming circular waves which invade the craters, whose remnants are visible as dimples. At this point the interface amplitude again goes through a minimum. The competition between the critical modes and the higher wavenumbers gives rise to a small scale six-fold flower petal pattern surrounding the dimples (figure 10b in Kityk et al.) Finally the dimples erupt upward at high velocity to reconstitute the large peaks at the beginning of the cycle. Hexagonal symmetry (reflexion and π/3 rotation invariance) is retained throughout.

Download Perinet et al. supplementary movie(Video)
Video 15 MB