Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T21:37:48.638Z Has data issue: false hasContentIssue false

Numerical simulation of a two-dimensional internal wave attractor

Published online by Cambridge University Press:  16 October 2008

NICOLAS GRISOUARD
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9, France
CHANTAL STAQUET
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9, France
IVANE PAIRAUD
Affiliation:
Laboratoire des Écoulements Géophysiques et Industriels, BP 53, 38041 Grenoble Cedex 9, France

Abstract

Internal (gravity) wave attractors may form in closed containers with boundaries non-parallel and non-normal to the gravity vector. Such attractors have been studied from a theoretical point of view, in laboratory experiments and using linear numerical computations. In the present paper two-dimensional numerical simulations of an internal wave attractor are reported, based upon the nonlinear and non-hydrostatic MIT-gcm numerical code. We first reproduce the laboratory experiment of a wave attractor performed by Hazewinkel et al. (J. Fluid Mech. Vol. 598, 2008 p. 373) and obtain very good agreement with the experimental data. We next propose simple ideas to model the thickness of the attractor. The model predicts that the thickness should scale as the 1/3 power of the non-dimensional parameter measuring the ratio of viscous to buoyancy effects. When the attractor is strongly focusing, the thickness should also scale as the 1/3 power of the spatial coordinate along the attractor. Analysis of the numerical data for two different attractors yields values of the exponent close to 1/3, within 30%. Finally, we study nonlinear effects induced by the attractor.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Browand, F. K., Guyomar, D. & Yoon, S. C. 1987 The behavior of a oscillating grid. J. Geophys. Res. 92, 53295341.Google Scholar
Drijfhout, S. S. & Maas, L. R. M. 2007 Impact of channel geometry and rotation on the trapping of internal tides. J. Phys. Oceanogr. 37, 27402763.Google Scholar
Gostiaux, L. 2006 Étude expérimentale des ondes de gravité internes: Émission, propagation, réflexion. Thèse de l'École Normale Supérieure de Lyon.Google Scholar
Hazewinkel, J., van Breevoort, P., Dalziel, S. B. & Maas, L. R. M. 2008 Observations on the wave number spectrum and evolution of an internal wave attractor in a two-dimensional basin. J. Fluid Mech. 598, 373382.CrossRefGoogle Scholar
Lam, F.-P. A. & Maas, L. R. M. 2008. Internal wave focusing revisited: A reanalysis and new theoretical links. Fluid Dyn. Res. 40, 95122.Google Scholar
Lighthill, J. 1978 Waves in Fluids. Cambridge University Press.Google Scholar
Maas, L. R. M. & Lam, F. P. A. 1995 Geometric focusing of internal waves. J. Fluid Mech. 300, 141.CrossRefGoogle Scholar
Maas, L. R. M., Benielli, D., Sommeria, J. & Lam, F. P. A. 1997 Observation of an internal wave attractor in a confined, stably stratified fluid. Nature 388, 557561.CrossRefGoogle Scholar
Marshall, J., Adcroft, A., Hill, C., Perelman, L. & Heisey, C. 1997 A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. 102, 57535766.Google Scholar
McEwan, A. D. 1971 Degeneration of resonantly-excited standing internal gravity waves. J. Fluid Mech. 50, 431448.Google Scholar
McPhee-Shaw, E. E. & Kunze, E. 2002 Boundary-layer intrusions from a sloping bottom: A mechanism for generating intermediate nepheloid layers. J. Geophys. Res. 107, doi:10.1029/2001JC000801.Google Scholar
Ogilvie, G. I. 2005 Wave attractors and the asymptotic dissipation rate of tidal disturbances. J. Fluid Mech. 543, 1944.CrossRefGoogle Scholar
Phillips, O. M. 1967 Dynamics of the Upper Ocean. Cambridge University Press.Google Scholar
Rieutord, M. & Valdettaro, L. 1997 Inertial waves in a rotating spherical shell. J. Fluid Mech. 341, 7799.CrossRefGoogle Scholar
Rieutord, M. & Noui, K. 1999 On the analogy between gravity modes and inertial modes in spherical geometry. Eur. Phys. J. B 9, 731738.Google Scholar
Rieutord, M., Georgeot, B. & Valdettaro, L. 2001 Inertial waves in a rotating spherical shell: Attractors and asymptotic spectrum. J. Fluid Mech. 435, 104144.Google Scholar
Rieutord, M., Valdettaro, L. & Georgeot, B. 2002 Analysis of singular inertial modes in a spherical shell: The slender toroidal shell model. J. Fluid Mech. 463, 345360.CrossRefGoogle Scholar
Tabaei, A., Akylas, T. R. & Lamb, K. G. 2005 Nonlinear effects in reflecting and colliding internal wave beams. J. Fluid Mech. 526, 217243.CrossRefGoogle Scholar
Tilgner, A. 2007 Zonal wind driven by inertial modes. Phys. Rev. Ltt. 99, 194501.CrossRefGoogle ScholarPubMed
Thomas, N. H. & Stevenson, T. N. 1972 A similarity solution for viscous internal waves. J. Fluid Mech. 54, 495506.Google Scholar
Winters, K. B., Lombard, P. N., Riley, J. J. & D'Asaro, E. A. 1995 Available potential energy and mixing in density-stratified fluids. J. Fluid Mech. 289, 115128.CrossRefGoogle Scholar