Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T22:28:58.050Z Has data issue: false hasContentIssue false

Numerical investigation of transition in a boundary layer subjected to favourable and adverse streamwise pressure gradients and elevated free stream turbulence

Published online by Cambridge University Press:  16 September 2015

Joshua R. Brinkerhoff
Affiliation:
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
Metin I. Yaras*
Affiliation:
Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
*
Email address for correspondence: [email protected]

Abstract

Laminar-to-turbulent transition of a boundary layer subjected to streamwise pressure gradients and elevated free stream turbulence is computed through direct numerical simulation. The streamwise pressure distribution and elevated free stream turbulence levels mimic the conditions present on the suction side of highly-cambered airfoils. Longitudinal streamwise streaks form in the laminar boundary layer through the selective inclusion of low-frequency disturbances from the free stream turbulence. The spanwise spacing normalized by local inner variables indicates stabilization of the streaks occurs by the favourable pressure gradient and prevents the development of secondary streak instability modes until downstream of the suction peak. Two distinct processes are found to trigger transition to turbulence in the adverse pressure gradient region of the flow. One involves the development of varicose secondary instability of individual low-speed streaks that results in their breakdown and the formation and growth of discrete turbulent spots. The other involves a rapid amplification of free stream disturbances in the inflectional boundary layer in the adverse pressure gradient region that results in a largely homogeneous breakdown to turbulence across the span. The effect of high-frequency free stream disturbances on the streak secondary instability and on the nonlinear processes within the growing turbulent spot are analysed through the inviscid transport of instantaneous vorticity. The results suggest that free stream turbulence contributes to the growth of the turbulent spot by generating large strain rates that activate vortex-stretching and tilting processes within the spot.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: School of Engineering, University of British Columbia – Okanagan campus, Kelowna, BC V1V 1V7, Canada.

References

Adrian, R. J., Meinhart, C. D. & Tomkins, C. D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.CrossRefGoogle Scholar
Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.CrossRefGoogle Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.Google Scholar
Asai, M., Konishi, Y., Oizumi, Y. & Nishioka, M. 2007 Growth and breakdown of low-speed streaks leading to wall turbulence. J. Fluid Mech. 586, 371396.Google Scholar
Asai, M., Minagawa, M. & Nishioka, M. 2002 The instability and breakdown of a near-wall low-speed streak. J. Fluid Mech. 455, 289314.CrossRefGoogle Scholar
Azih, C., Brinkerhoff, J. R. & Yaras, M. I. 2012 Direct numerical simulation of convective heat transfer in a zero-pressure-gradient boundary layer with supercritical water. J. Therm. Sci. 21, 4959.Google Scholar
Blair, M. F. 1992 Boundary-layer transition in accelerating flows with intense freestream turbulence: Part 1—Disturbances upstream of transition onset. Trans. ASME J. Fluids Engng 114 (3), 313321.CrossRefGoogle Scholar
Brandt, L. & de Lange, H. C. 2008 Streak interactions and breakdown in boundary layer flows. Phys. Fluids 20 (2), 024107.Google Scholar
Brandt, L. & Henningson, D. S. 2002 Transition of streamwise streaks in zero-pressure-gradient boundary layers. J. Fluid Mech. 472, 229261.Google Scholar
Brinkerhoff, J. R. & Yaras, M. I. 2011 Interaction of viscous and inviscid instability modes in separation–bubble transition. Phys. Fluids 23 (12), 124102.Google Scholar
Cherubini, S., De Palma, P., Robinet, J.-C. & Bottaro, A. 2011 The minimal seed of turbulent transition in the boundary layer. J. Fluid Mech. 689, 221253.Google Scholar
Choi, H. & Moin, P. 1994 Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys. 113, 14.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Dryden, H. L.1936 Air flow in the boundary layer near a plate. NACA Tech. Rep. 562.Google Scholar
Elofsson, P. A., Kawakami, M. & Alfredsson, P. H. 1999 Experiments of the stability of streamwise streaks in plane poiseuille flow. Phys. Fluids 11, 915930.Google Scholar
Emmons, H. W. 1951 The laminar-turbulent transition in a boundary layer. Part 1. J. Aero. Sci. 18, 490498.CrossRefGoogle Scholar
Escudier, M. P., Abdel-Hameed, A., Johnson, M. W. & Sutcliffe, C. J. 1998 Laminarisation and re-transition of a turbulent boundary layer subjected to favourable pressure gradient. Exp. Fluids 26, 491502.CrossRefGoogle Scholar
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.Google Scholar
Hickey, J.-P., Blakie, S., Gray, C. & Wu, X. 2010 Further studies on the statistics and structures of flat-plate boundary layer with passing wakes. Intl J. Heat Fluid Flow 31 (3), 315326.Google Scholar
Hunt, J. C. R. & Durbin, P. A. 1999 Perturbed vortical layers and shear sheltering. Fluid Dyn. Res. 24 (6), 375404.Google Scholar
Jacobs, R. G. & Durbin, P. A. 1998 Shear sheltering and the continuous spectrum of the Orr–Sommerfeld equation. Phys. Fluids 10 (8), 20062011.CrossRefGoogle Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185221.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Jones, V. P. & Launder, B. E. 1972 Some properties of sink-flow turbulent boundary layers. J. Fluid Mech. 56, 337351.Google Scholar
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133160.CrossRefGoogle Scholar
Klebanoff, P. S.1954, Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA Tech. Rep. TN-3178.Google Scholar
Klebanoff, P. S. 1971 Effect of freestream turbulence on the laminar boundary layer. Bull. Am. Phys. Soc. 10, 1323.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 134.Google Scholar
Konishi, Y. & Asai, M. 2004 Experimental investigation of the instability of spanwise-periodic low-speed streaks. Fluid Dyn. Res. 34, 299315.CrossRefGoogle Scholar
Le Cunff, C. & Bottaro, A. 1993 Linear stability of shear profiles and relation to the secondary instability of the dean flow. Phys. Fluids A 5 (9), 21612171.Google Scholar
Litvinenko, Yu. A., Chernoray, V. G., Kozlov, V. V., Grek, G. R., Löfdahl, L. & Chun, H. H. 2005 Adverse pressure gradient effect on nonlinear varicose instability of a streaky structure in an unswept wing boundary layer. Phys. Fluids 17 (11), 118106.Google Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008 Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199233.CrossRefGoogle Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to freestream turbulence. J. Fluid Mech. 430, 149168.Google Scholar
Mayle, R. E., Dullenkopf, K. & Schulz, A. 1998 1997 Best Paper Award – Heat Transfer Committee: The turbulence that matters. Trans. ASME J. Turbomach. 120 (3), 402409.Google Scholar
McAuliffe, B. R. & Yaras, M. I. 2010 Transition mechanisms in separation bubbles under low- and elevated-freestream turbulence. Trans. ASME J. Turbomach. 132 (1), 011004.Google Scholar
Moretti, P. M. & Kays, W. M. 1965 Heat transfer to turbulent boundary layer with varying free-stream velocity and varying surface temperature—an experimental study. Intl J. Heat Mass Transfer 9, 11871202.Google Scholar
Morkovin, M. V. 1969 On the Many Faces of Transition, pp. 131. Plenum.Google Scholar
Nishioka, M., Asai, M. & Iida, S. 1981 Wall phenomena in the final stage of transition to turbulence. In Transition and Turbulence: Proceedings of the Symposium on Transition and Turbulence in Fluids (ed. Meyer, R. E.), pp. 113126. Academic.Google Scholar
Nolan, K. P. & Walsh, E. J. 2012 Particle image velocimetry measurements of a transitional boundary layer under free stream turbulence. J. Fluid Mech. 702, 215238.Google Scholar
Park, G. I., Wallace, J. M., Wu, X. & Moin, P. 2012 Boundary layer turbulence in transitional and developed states. Phys. Fluids 24 (3), 035105.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.CrossRefGoogle Scholar
Rajaee, M., Karlsson, S. & Sirovich, L. 1995 On the streak spacing and vortex roll size in a turbulent channel flow. Phys. Fluids 7, 24392443.Google Scholar
Reynolds, G. A. & Saric, W. S. 1986 Experiments on the stability of the flat-plate boundary layer with suction. AIAA J. 24, 202207.Google Scholar
Roach, P. E. 1986 The generation of nearly isotropic turbulence by meansof grids. J. Heat Fluid Flow 8, 8292.Google Scholar
Roach, P. E. & Brierley, D. H. 1990 The influence of a turbulent free stream on zero pressure gradient transitional boundary layer development. Part 1. Test cases T3A and T3B. In Numerical Simulation of Unsteady Flows and Transition to Turbulence (ed. Pironneau, D., Rode, W. & Ryhming, I. L.). Cambridge University Press.Google Scholar
Roberts, S. K. & Yaras, M. I. 2005 Boundary layer transition affected by surface roughness and freestream turbulence. Trans. ASME J. Fluids Engng 127, 449457.Google Scholar
Sandham, N. D. & Kleiser, L. 1992 The late stages of transition to turbulence in channel flow. J. Fluid Mech. 245, 319348.Google Scholar
Schlatter, P., Brandt, L., de Lange, H. C. & Henningson, D. S. 2008 On streak breakdown in bypass transition. Phys. Fluids 20, 101505.Google Scholar
Schröder, A. & Kompenhans, J. 2004 Investigation of a turbulent spot using multi-plane stereo particle image velocimetry. Exp. Fluids 36, 8290.Google Scholar
Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.Google Scholar
Spalart, P. R. 1988 Direct simulation of a turbulent boundary layer up to $Re_{{\it\theta}}=1410$ . J. Fluid Mech. 187, 6198.Google Scholar
Stanislas, M., Perret, L. & Foucaut, J.-M. 2008 Vortical structures in the turbulent boundary layer: a possible route to a universal representation. J. Fluid Mech. 602, 327382.Google Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.Google Scholar
Talamelli, A., Fornaciari, N., Westin, K. J. A. & Alfredsson, P. H. 2002 Experimental investigation of streaky structures in a relaminarizing boundary layer. J. Turbul. 3, N18.CrossRefGoogle Scholar
Volino, R. J., Schultz, M. P. & Pratt, C. M. 2001 Conditional sampling in a transitional boundary layer under high freestream turbulence conditions. In ASME Paper GT-0192.Google Scholar
Wu, X. 2010 Establishing the generality of three phenomena using a boundary layer with free-stream passing wakes. J. Fluid Mech. 664, 193219.CrossRefGoogle Scholar
Wu, X., Jacobs, R. G., Hunt, J. C. R. & Durbin, P. A. 1999 Simulation of boundary layer transition induced by periodically passing wakes. J. Fluid Mech. 398, 109153.Google Scholar
Yaras, M. I. 2007 An experimental study of artificially-generated turbulent spots under strong favorable pressure gradients and freestream turbulence. Trans. ASME J. Fluids Engng 129, 563572.Google Scholar
Zaki, T. A. & Durbin, P. A. 2005 Mode interaction and the bypass route to transition. J. Fluid Mech. 531, 85111.CrossRefGoogle Scholar
Zaki, T. A. & Durbin, P. A. 2006 Continuous mode transition and the effects of pressure gradient. J. Fluid Mech. 563, 357388.Google Scholar