Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T22:05:01.571Z Has data issue: false hasContentIssue false

Numerical investigation of the tone noise mechanism over laminar airfoils

Published online by Cambridge University Press:  30 October 2007

G. DESQUESNES
Affiliation:
Departement of Numerical Simulation and Aeroacoustics, ONERA, 29 av Division Leclerc, BP 72, 92322 Châtillon cedex, France
M. TERRACOL
Affiliation:
Departement of Numerical Simulation and Aeroacoustics, ONERA, 29 av Division Leclerc, BP 72, 92322 Châtillon cedex, France
P. SAGAUT
Affiliation:
Institut Jean le Rond d'Alembert, Université Pierre et Marie Curie – Paris 6, Case 162, 4 place Jussieu, 75252 Paris cedex 05, France

Abstract

This paper presents the first numerical investigation via direct numerical simulation of the tone noise phenomenon occurring in the flow past laminar airfoils. This phenomenon corresponds to the radiation of discrete acoustic tones in some specific flow conditions, and has received much attention since the 1970s, and several experimental studies have been carried out to identify and understand the underlying physical mechanisms. However, several points remain to be clarified in order to provide a complete explanation of its origin. The flow around a two-dimensional NACA0012 airfoil is considered in order to have a deeper understanding of the tone noise phenomenon. Consistently with previous experimental studies, it is shown that depending on the Reynolds number and angle of attack, two different types of acoustic spectrum are observed: one which exhibits a broadband contribution with a dominant frequency together with a sequence of regularly spaced discrete frequencies, while the other one is only characterized by a simple broadband contribution. The first configuration is typical of the tone noise phenomenon. The present work shows that in this case, the mean flow on the pressure side of the airfoil exhibits a separation bubble near the trailing edge and the main tone frequency is close to the most amplified frequency of the boundary layer. The mechanism proposed in previous works for the main tone generation – which implies the existence of a separation bubble at the pressure side – is therefore validated by numerical simulation. On the other hand, the analysis of the suction side boundary layer reveals that there is no separation and that the most amplified frequency is different from the main tonal one. However, the suction side boundary layer is highly receptive to the tone frequency. Finally, an original explanation for the existence of the secondary discrete frequencies observed in the radiated pressure spectrum is given. They are associated to a bifurcation of the airfoil wake from a symmetric to a non-symmetric vortex pattern. A possible explanation for the existence of this bifurcation is the interaction between the disturbances which are the most amplified by the suction side boundary layer and those originating in the forcing of the suction side flow by the main tone noise mechanism.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 403, 233250.CrossRefGoogle Scholar
Arbey, H. 1981 Contribution à l'étude des mécanismes de l'émission sonore de profils aérodynamiques placés dans des écoulements sains ou perturbés. PhD thesis, Université Claude Bernard Lyon I.Google Scholar
Arbey, H. & Bataille, J. 1983 Noise generated by airfoil profiles placed in a uniform laminar flow. J. Fluid Mech. 134, 3347.CrossRefGoogle Scholar
Archibald, F. S. 1975 The laminar boundary layer instability excitation of an acoustic resonance. J. Sound Vib. 38, 387402.CrossRefGoogle Scholar
Brooks, T. F., Pope, D. S. & Marcolini, M. A. 1989 Airfoil self noise and prediction. NASA Ref. Pub. 1218.Google Scholar
Cabana, M., Fortune, V. & Jordan, P. 2006 A look inside the Lighthill source term. In 12th AIAA/CEAS Aeroacoustics Conference. AIAA Paper 2006-248.CrossRefGoogle Scholar
Clark, L. T. 1971 The radiation of sound from an airfoil immersed in a laminar flow. Trans. ASME J. Engng Power 93, 366376.CrossRefGoogle Scholar
Desquesnes, G., Terracol, M., Manoha, E. & Sagaut, P. 2006 On the use of a high order overlapping grid method for coupling in CFD/CAA. J. Comput. Phys. 220, 355382.CrossRefGoogle Scholar
Fink, M. R. 1975 Prediction of airfoil tone frequencies. J. Aircraft 12, 118120.CrossRefGoogle Scholar
Fink, M. R. 1978 Fine structure of airfoil tone frequency. 95th Meeting Acoust. Soc. Am. Paper H3.Google Scholar
Gabor, D. 1946 Theory of communication. J. IEEE 93, 429457.Google Scholar
Gaudriot, L., Hellion, A., Bequet, B. & Arbey, H. 1982 Analyse du bruit de profil par réseaux de capteurs proches ou lointains. Rev. d'Acoust. 63, 208210.Google Scholar
Goldstein, M. E., Leib, S. J. & Cowley, S. J. 1987 Generation of Tollmien–Schlichting waves on interactive marginally separated flows. J. Fluid Mech. 181, 485517.CrossRefGoogle Scholar
Henry, C. 1975 Solution numérique par une méthode de singularités du problème de l'écoulement compressible sur des surfaces de courant axi-symetriques. PhD thesis, Université Claude Bernard Lyon I.Google Scholar
Hersh, A. S. & Hayden, R. E. 1971 Aerodynamic sound radiation from lifting surfaces with and without leading edge serrations. NASA Contractor Rep. CR-114370.Google Scholar
Koch, W. 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99, 5383.CrossRefGoogle Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Longhouse, R. E. 1977 Vortex shedding of low tip speed axial flow fans. J. Sound Vib. 53, 2546.CrossRefGoogle Scholar
Lowson, M. V., Fiddes, S. P. & Nash, E. C. 1994 Laminar boundary layer aeroacoustic instabilities. AIAA Paper 94-0358.CrossRefGoogle Scholar
Lowson, M. V., McAlpine, A. & Nash, E. C. 1998 The generation of boundary layer instability noise on aerofoils. AIAA Paper 98-0626.CrossRefGoogle Scholar
McAlpine, A., Nash, E. C. & Lowson, M. V. 1999 On the generation of discrete frequency tones by the flow around an aerofoil. J. Sound Vib. 222, 753779.CrossRefGoogle Scholar
Mari, C., Jeandel, D. & Mathieu, J. 1976 Méthode de calcul de couche limite turbulente compressible par transfert de chaleur. Intl J. Heat Mass Transfer 19, 893899.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 374, 379405.CrossRefGoogle Scholar
Nash, E. C. & Lowson, M. V. 1995 Noise due to boundary layer instabilities. CEAS/AIAA Aeroacoustics Conference, Munich, Paper 95–124.Google Scholar
Nash, E. C., Lowson, M. V. & McAlpine, A. 1999 Boundary-layer instability noise on aerofoils. J. Fluid Mech. 382, 2761.CrossRefGoogle Scholar
Obremski, H. J., Morkovin, M. V., Landahl, M., Wazzan, A. R., Okamura, T. T. & Smith, A. M. O. 1969 A portfolio of stability characteristics of incompresible boundary layers. AGARDograph 134.Google Scholar
Paterson, R. W., Vogt, P. G. & Fink, M. R. 1972 Vortex noise of isolated airfoils. AIAA Paper 72-656.CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Sharland, I. J. 1964 Sources of noise in axial flow fans. J. Sound Vib. 1, 302322.CrossRefGoogle Scholar
Shen, S. F. 1954 Calculated amplified oscillations in the plane Poisseuille and Blasius flows. J. Aeronaut. Sci. 21, 6264.CrossRefGoogle Scholar
Smith, D. L., Paxson, R. P., Talmadge, R. D. & Hotzo, E. R. 1970 Measurements of the radiated noise from sailplanes. Rep. TM-70-3-FDAA, US Air Force Flight Dynamics Laboratory.CrossRefGoogle Scholar
Stewartson, K., Smith, F. T. & Kaups, K. 1982 Marginal separation. Stud. Appl. Maths 67, 4561.CrossRefGoogle Scholar
Sunyach, M., Arbey, H., Robert, D., Bataille, J. & Comte-Bellot, G. 1973 Correlations between far-field acoustic pressure and flow characteristics for a single airfoil. AGARD Conf. 131 Noise Mechanisms, paper 5.Google Scholar
Tam, C. K. W. 1974 Discrete tones of isolated airfoils. J. Acoust. Soc. Am. 55 (6), 11731177.CrossRefGoogle Scholar
Thompson, K. W. 1987 Time dependant boundary conditions for hyperbolic systems. J. Comput. Phys. 68, 124.CrossRefGoogle Scholar
Visbal, M. R. & Gaitonde, D. V. 2002 On the use of higher-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155185.CrossRefGoogle Scholar