Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T21:42:15.832Z Has data issue: false hasContentIssue false

Numerical investigation of the nonlinear transition regime in a Mach 2 boundary layer

Published online by Cambridge University Press:  26 November 2010

CHRISTIAN S. J. MAYER*
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
STEFAN WERNZ
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
HERMANN F. FASEL
Affiliation:
Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
*
Present address: ExxonMobil Upstream Research Company, Houston, TX 77252, USA. Email address for correspondence: [email protected]

Abstract

The transition process in a supersonic flat-plate boundary layer at Mach 2 is investigated numerically using linear stability theory (LST) and direct numerical simulations (DNS). The experimental investigations by Kosinov and his co-workers serve as a reference and provide the physical conditions for the numerical set-up. In these experiments, the weakly nonlinear regime of transition was studied. This led to the discovery of asymmetric subharmonic resonance triads, which appear to be relevant for transition in a Mach 2 boundary layer. These triads were composed of one primary oblique wave of frequency 20kHz and two oblique subharmonic waves of frequency 10kHz. While the experimentalists have focused on this new breakdown mechanism, we have found that the experimental data also indicate the presence of another mechanism related to oblique breakdown. This might be the first experimental evidence of the oblique breakdown mechanism in a supersonic boundary layer. With the simulations presented here, the possible presence of oblique breakdown mechanisms in the experiments is explored by deliberately suppressing subharmonic resonances in the DNS and by comparing the numerical results with the experimental data. The DNS results show excellent agreement with the experimental measurements for both linear and nonlinear transition stages. Most importantly, the results clearly show the characteristic features of oblique breakdown. In addition, we also investigated the subharmonic transition route using LST and DNS. When forcing both the subharmonic and the fundamental frequencies in the DNS, a subharmonic resonance mechanism similar to that in the experiments can be observed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, N. A. & Sandham, N. A. 1993 Numerical simulation of boundary-layer transition at Mach two. Appl. Sci. Res. 51, 371375.Google Scholar
Berlin, S., Lundbladh, A. & Henningson, D. S. 1994 Spatial simulations of oblique transition in a boundary layer. Phys. Fluids 6 (6), 19491951.CrossRefGoogle Scholar
Berlin, S., Wiegel, M. & Henningson, D. S. 1999 Numerical and experimental investigations of oblique boundary layer transition. J. Fluid Mech. 393, 2357.CrossRefGoogle Scholar
Canuto, C., Hussaini, M., Quateroni, A. & Zang, T. 1988 Spectral Methods in Fluid Dynamics. Springer.CrossRefGoogle Scholar
Chang, C. L. & Malik, M. R. 1994 Oblique-mode breakdown and secondary instability in supersonic boundary layers. J. Fluid Mech. 273, 323360.CrossRefGoogle Scholar
Craik, A. D. D. 1971 Non-linear resonant instability in boundary layers. J. Fluid Mech. 50, 393413.CrossRefGoogle Scholar
Demetriades, A. 1960 An experiment on the stability of hypersonic laminar boundary layers. J. Fluid Mech. 7, 385396.CrossRefGoogle Scholar
Eissler, W. & Bestek, H. 1996 Spatial numerical simulations of linear and weakly nonlinear wave instabilities in supersonic boundary layers. Theor. Comput. Fluid Dyn. 8, 219235.CrossRefGoogle Scholar
Elofsson, P. A. & Alfredsson, P. H. 1998 An experimental study of oblique transition in plane Poiseuille flow. J. Fluid Mech. 358, 177202.CrossRefGoogle Scholar
Elofsson, P. A. & Alfredsson, P. H. 2000 An experimental study of oblique transition in a Blasius boundary layer flow. Eur. J. Mech. B Fluids 19, 615636.CrossRefGoogle Scholar
Erlebacher, G. & Hussaini, M. Y. 1990 Numerical experiments in supersonic boundary-layer stability. Phys. Fluids A 2, 94104.CrossRefGoogle Scholar
Ermolaev, Y. G., Kosinov, A. D. & Semionov, N. V. 1996 Experimental investigation of laminar–turbulent transition process in supersonic boundary layer using controlled disturbances. In Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (ed. Duck, P. W. & Hall, P.), pp. 1726. Kluwer.Google Scholar
Fasel, H., Thumm, A. & Bestek, H. 1993 Direct numerical simulation of transition in supersonic boundary layer: oblique breakdown. In Transitional and Turbulent Compressible Flows (ed. Kral, L. D. & Zang, T. A.), FED, vol. 151, pp. 7792. ASME.Google Scholar
Fezer, A. & Kloker, M. 1999 Spatial direct numerical simulation of transition phenomena in supersonic flat-plate boundary layers. In Laminar–Turbulent Transition (ed. Fasel, H. F. & Saric, W. S.), pp. 415420. Springer.Google Scholar
Harris, P. J. 1997 Numerical investigation of transitional compressible plane wakes. PhD thesis, The University of Arizona.Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.CrossRefGoogle Scholar
Jiang, L., Choudhari, M., Chang, C.-L. & Liu, C. 2006 Numerical simulations of laminar–turbulent transition in supersonic boundary layers. AIAA Paper 2006-3224.CrossRefGoogle Scholar
Kachanov, Y. S. 1994 Physical mechanisms of laminar boundary-layer transition. Annu. Rev. Fluid Mech. 26, 411482.CrossRefGoogle Scholar
Kachanov, Y. S., Kozlov, V. V. & Levchenko, V. Y. 1977 Nonlinear development of a wave in a laminar boundary layer. Fluid Dyn. 12, 347492.Google Scholar
Kachanov, Y. S. & Levchenko, V. Y. 1984 The resonant interaction of disturbances at laminar–turbulent transition in a boundary layer. J. Fluid Mech. 138, 209247.CrossRefGoogle Scholar
Kendall, J. M. 1975 Wind tunnel experiments relating to supersonic and hypersonic boundary-layer transition. AIAA J. 13, 290299.CrossRefGoogle Scholar
Kosinov, A. D. & Maslov, A. A. 1985 Development of artificially excited disturbances in supersonic boundary layers. In Laminar–Turbulent Transition (ed. Kozlov, V. V.), pp. 601606. Springer.CrossRefGoogle Scholar
Kosinov, A. D., Maslov, A. A. & Semionov, N. V. 1997 An experimental study of generation of unstable disturbances on the leading edge of a plate at M = 2. J. Appl. Mech. Tech. Phys. 38 (1), 4550.CrossRefGoogle Scholar
Kosinov, A. D., Maslov, A. A. & Shevelkov, S. G. 1990 Experiments on the stability of supersonic laminar boundary layers. J. Fluid Mech. 219, 621633.CrossRefGoogle Scholar
Kosinov, A. D., Semionov, N. V. & Shevelkov, S. G. 1994 a Investigation of supersonic boundary layer stability and transition using controlled disturbances. In Methods of Aerophysical Research (ed. Kharitonov, A. M.), vol. 2, pp. 159166. Russian Academy of Sciences.Google Scholar
Kosinov, A. D., Semionov, N. V., Shevelkov, S. G. & Zinin, O. I. 1994 b Experiments on the nonlinear instability of supersonic boundary layers. In Nonlinear Instability of Nonparallel Flows (ed. Valentine, D. T., Lin, S. P. & Philips, W. R. C.), pp. 196205. Springer.CrossRefGoogle Scholar
Kosinov, A. D. & Tumin, A. 1996 Resonance interaction of wave trains in supersonic boundary layer. In Nonlinear Instability and Transition in Three-Dimensional Boundary Layers (ed. Duck, P. W. & Hall, P.), pp. 379388. Kluwer.Google Scholar
Laufer, J. & Vrebalovich, T. 1960 Stability and transition of a supersonic laminar boundary layer on an insulated flat plate. J. Fluid Mech. 9, 257299.CrossRefGoogle Scholar
Lysenko, V. I. & Maslov, A. A. 1984 The effect of cooling on supersonic boundary-layer stability. J. Fluid Mech. 147, 3852.CrossRefGoogle Scholar
Mack, L. M. 1965 Computation of the stability of the laminar boundary layer. In Methods in Comp. Physics (ed. Alder, B., Fernbach, S. & Rotenberg, M.), vol. 4, pp. 247299. Academic Press.Google Scholar
Mack, L. M. 1984 Boundary-layer linear stability theory. AGARD Report 709. Advisory Group for Aerospace Research and Development.Google Scholar
Mack, L. M. 1987 Stability of axisymmetric boundary layers on sharp cones at hypersonic Mach numbers. AIAA Paper 1987-1413.CrossRefGoogle Scholar
Masad, J. A. & Nayfeh, A. H. 1990 Subharmonic instability of compressible boundary layers. Phys. Fluids A 2, 13801392.CrossRefGoogle Scholar
Mayer, C. S. J. 2009 Numerical investigation of the nonlinear transition regime in supersonic boundary layers. PhD thesis, The University of Arizona.Google Scholar
Mayer, C. S. J. & Fasel, H. F. 2008 Investigation of asymmetric subharmonic resonance in a supersonic boundary layer at Mach 2 using DNS. AIAA Paper 2008-0591.CrossRefGoogle Scholar
Mayer, C. S. J., von Terzi, D. A. & Fasel, H. F. 2008 DNS of complete transition to turbulence via oblique breakdown at Mach 3. AIAA Paper 2008-4398.CrossRefGoogle Scholar
Meitz, H. & Fasel, H. F. 2000 A compact-difference scheme for the Navier–Stokes equations in vorticity–velocity formulation. J. Comp. Phys. 157, 371403.CrossRefGoogle Scholar
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1990 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Math. 53, 15.CrossRefGoogle Scholar
Sandham, N. D., Adams, N. A. & Kleiser, L. 1995 Direct simulation of breakdown to turbulence following oblique instability waves in a supersonic boundary layer. Appl. Sci. Res. 54, 223234.CrossRefGoogle Scholar
Saric, W. S. & Thomas, A. S. W. 1984 Experiments on the subharmonic route to turbulence in boundary layers. In Turbulence and Chaotic Phenomena in Fluids (ed. Tatsumi, T.), pp. 117122. North-Holland.Google Scholar
Schmid, P. J. & Henningson, D. S. 1992 A new mechanism for rapid transition involving a pair of oblique waves. Phys. Fluids A 4, 19861989.CrossRefGoogle Scholar
von Terzi, D. A. 2004 Numerical investigation of transitional and turbulent backward-facing step flows. PhD thesis, The University of Arizona.Google Scholar
Thumm, A. 1991 Numerische Untersuchungen zum laminar–turbulenten Strömungsumschlag in transsonischen Grenzschichtströmungen. PhD thesis, Universität Stuttgart.Google Scholar
Thumm, A., Wolz, W. & Fasel, H. 1989 Numerical simulation of Tollmien–Schlichting waves in compressible transsonic boundary layers on plates. Z. Angew. Math. Mech. 69, 598600.Google Scholar
Thumm, A., Wolz, W. & Fasel, H. F. 1990 Numerical simulation of spatially growing three-dimensional disturbance waves in compressible boundary layers. In Laminar–Turbulent Transition (ed. Arnal, D. & Michel, R.), pp. 303308. Springer.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.CrossRefGoogle ScholarPubMed
Tumin, A. 1995 Three-wave non-linear interaction in a three-dimensional compressible boundary layer. Intl J. Non-Linear Mech. 30 (5), 661.CrossRefGoogle Scholar
Tumin, A. 1996 Nonlinear interaction of wave trains in a supersonic boundary layer. Phys. Fluids 8 (9), 25522554.CrossRefGoogle Scholar
Volodin, A. G. & Zelman, M. B. 1978 Three-wave resonance interaction of disturbances in a boundary layer. Fluid Dyn. 13 (5), 698703.CrossRefGoogle Scholar
Volodin, A. G. & Zelman, M. B. 1981 The nature of differences in some forms of transition in the boundary layer. AIAA J. 19 (7), 950952.CrossRefGoogle Scholar
Wiegel, M. 1996 Experimentelle Untersuchung von kontrolliert angeregten, dreidimensionalen Wellen in einer Blasius-Grenzschicht. PhD thesis, Universität Hannover.Google Scholar
Zelman, M. B. & Maslennikova, I. I. 1993 Tollmien–Schlichting-wave resonant mechanism for subharmonic-type transition. J. Fluid Mech. 252, 449478.CrossRefGoogle Scholar
Zengl, M. 2006 Direct numerical simulation of oblique–subharmonic wave interactions in a flat-plate boundary layer at Mach three. Master's thesis, Universität Stuttgart/The University of Arizona.Google Scholar