Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T02:36:06.151Z Has data issue: false hasContentIssue false

Numerical investigation of the dynamic influence of the contact line region on the macroscopic meniscus shape

Published online by Cambridge University Press:  26 April 2006

Ivan B. Bazhlekov
Affiliation:
Institute of Mathematics, BAS, acad. G. Bonchev str. bl. 8, 1113 Sofia, PO Box 373, Bulgaria
Allan K. Chesters
Affiliation:
Laboratory of Fluid Dynamics and Heat Transfer, Eindhoven University of Technology, PO Box 513, Eindhoven, The Netherlands

Abstract

The influence of different boundary conditions applied in the contact line region on the outer meniscus shape is analysed by means of a finite-element numerical simulation of the steady movement of a liquid-gas meniscus in a capillary tube. The free-surface steady shape is obtained by solving the unsteady creeping-flow approximation of the Navier–Stokes equations starting from some initial shape. Comparisons of the outer solutions obtained using two different inner models, together with that published by Lowndes (1980), indicate the relative insensitivity of the outer solution to the type of model utilized in the contact line region.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boender, W., Chesters, A. K. & Zanden, A. J. J. van der 1991 An approximate analytical solution of the hydrodynamic problem associated with an advancing liquid–gas contact line. Intl J. Multiphase Flow 17, 661.Google Scholar
Chesters, A. K. & Zanden, A. J. J. van der 1993 An approximate solution of the hydrodynamic problem associated with receding liquid-gas contact lines. Intl J. Multiphase Flow 19, 905.Google Scholar
Christodoulou, K. N. & Scriven, L. E. 1989 The fluid mechanics of slide coating. J. Fluid Mech. 208, 321.Google Scholar
Gennes, P. G. de, Hua, X. & Levinson, P. 1990 Dynamics of wetting: local contact angles. J. Fluid Mech. 212, 55.Google Scholar
Hansen, R. J. & Toong, T. Y. 1971 Interface behavior as one fluid completely displaces another from a small-diameter tube. J. Colloid Interface Sci. 36, 410.Google Scholar
Hoffman, R. 1975 A study of the advancing interface. I. Interface shape in liquid-gas systems. J. Colloid Interface Sci. 50, 228.Google Scholar
Huh, C. & Mason, S. G. 1977 The steady movement of a liquid meniscus in a capillary tube. J. Fluid Mech. 81, 401.Google Scholar
Kafka, F. Y. & Dussan, V. E. B. 1979 On the interpretation of dynamic contact angles in capillaries. J. Fluid Mech. 95, 539.Google Scholar
Kalliadasis, S. & Chang, C.-H. 1994 Apparent dynamic contact angle of an advancing gas-liquid meniscus. Phys. Fluids 6, 12.Google Scholar
Koplik, J., Banavar, J. R. & Willemsen, J. F. 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781.Google Scholar
Lowndes, J. 1980 The numerical simulation of the steady motion of the fluid meniscus in a capillary tube. J. Fluid Mech. 101, 631.Google Scholar
Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1.Google Scholar
Shopov, P. J. & Bazhlekov, I. B. 1991 Numerical method for viscous hydrodynamic problems with dynamic contact lines. Comput. Meth. Appl. Mech. Engng 91, 1157.Google Scholar
Shopov, P. J., Minev, P. D. & Bazhlekov, I. B. 1992 Numerical method for unsteady viscous hydrodynamical problem with free boundaries. Intl J. Numer. Meth. Fluids 14, 681.Google Scholar
Zanden, A. J. J. van der & Chesters, A. K. 1994a An experimental study of the meniscus shape associated with moving liquid–fluid contact lines. Intl J. Multiphase Flow 20, 775.Google Scholar
Zanden, A. J. J. van der & Chesters, A. K. 1994b An approximate solution of the hydrodynamic problem associated with moving liquid-liquid contact lines. Intl J. Multiphase Flow 20, 789.Google Scholar
Zhou, M.-Y. & Sheng, P. 1990 Dynamics of immiscible-fluid displacement in acapillary tube. Phys. Rev. Lett. 64, 882.Google Scholar