Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T22:48:27.433Z Has data issue: false hasContentIssue false

A numerical investigation of granular shock waves over a circular cylinder using the discrete element method

Published online by Cambridge University Press:  07 February 2022

Akhil K. Mathews
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
Aqib Khan
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
Bhanuday Sharma
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
Sanjay Kumar
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
Rakesh Kumar*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
*
Email address for correspondence: [email protected]

Abstract

Numerical simulation based on the discrete element method (DEM) is used to investigate the flow field generated when a cylindrical obstacle is placed in a supersonic granular stream. Robust validation of the simulation model is performed by comparing numerical results with experiments. Experiments are performed using a two-dimensional set-up generating rapid granular flow owing to gravity. DEM simulations demonstrate that a rapid gas-like stream of grains suddenly decelerates across the shock wave and finally collapses into a slow-moving heap at the cylinder. The volume fraction suddenly increases across the shock layer and remains constant thereafter. The flow physics of the shock wave and the granular heap is elucidated through fundamental fluid dynamic quantities such as the velocity, volume fraction, pressure and granular temperature. It is shown that the interaction of grains with a cylindrical obstacle results in the generation of pressure, which is responsible for sustaining static granular heaps on the cylinder. The total pressure is resolved into collisional and streaming components. A streaming pressure is generated owing to velocity fluctuations, and is found to be significant only in the shock wave region. The observations show that the rheological complexity offered by granular shock waves is a direct manifestation of the dissipative and frictional nature of granular collisions. The new insight into the granular heaps could be relevant to a variety of applications involving granular-fluid–solid interactions.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ai, J., Chen, J.F., Rotter, J.M. & Ooi, J.Y. 2011 Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206 (3), 269282.CrossRefGoogle Scholar
Amarouchene, Y., Boudet, J.F. & Kellay, H. 2001 Dynamic sand dunes. Phys. Rev. Lett. 86 (19), 4286.CrossRefGoogle ScholarPubMed
Amarouchene, Y. & Kellay, H. 2006 Speed of sound from shock fronts in granular flows. Phys. Fluids 18 (3), 031707.CrossRefGoogle Scholar
Anderson, J.D. 2004 Modern Compressible Flow: With Historical Perspective. McGraw-Hill.Google Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 a Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Andreotti, B., Forterre, Y. & Pouliquen, O. 2013 b Granular Media: Between Fluid and Solid. Cambridge University Press.CrossRefGoogle Scholar
Bird, G.A. 1970 Aspects of the structure of strong shock waves. Phys. Fluids 13 (5), 11721177.CrossRefGoogle Scholar
Bird, G.A. 1978 Monte Carlo simulation of gas flows. Annu. Rev. Fluid Mech. 10 (1), 1131.CrossRefGoogle Scholar
Boudet, J.F., Amarouchene, Y. & Kellay, H. 2008 Shock front width and structure in supersonic granular flows. Phys. Rev. Lett. 101 (25), 254503.CrossRefGoogle ScholarPubMed
Buchholtz, V. & Pöschel, T. 1998 Interaction of a granular stream with an obstacle. Granul. Matt. 1 (1), 3341.CrossRefGoogle Scholar
Campbell, C.S. 1989 The stress tensor for simple shear flows of a granular material. J. Fluid Mech. 203, 449473.CrossRefGoogle Scholar
Cui, X. & Gray, J.M.N.T. 2013 Gravity-driven granular free-surface flow around a circular cylinder. J. Fluid Mech. 720, 314337.CrossRefGoogle Scholar
Cui, X., Gray, J.M.N.T. & Johannesson, T. 2007 Deflecting dams and the formation of oblique shocks in snow avalanches at Flateyri, Iceland. J. Geophys. Res.: Earth Surf. 112 (F4), F04012.CrossRefGoogle Scholar
Delannay, R., Valance, A., Mangeney, A., Roche, O. & Richard, P. 2017 Granular and particle-laden flows: from laboratory experiments to field observations. J. Phys. D: Appl. Phys. 50 (5), 053001.CrossRefGoogle Scholar
Di Renzo, A. & Di Maio, F.P. 2004 Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Engng Sci. 59 (3), 525541.CrossRefGoogle Scholar
Faug, T., Childs, P., Wyburn, E. & Einav, I. 2015 Standing jumps in shallow granular flows down smooth inclines. Phys. Fluids 27 (7), 073304.CrossRefGoogle Scholar
Garai, P., Verma, S. & Kumar, S. 2019 Visualization of shocks in granular media. J. Vis. 22 (4), 729739.CrossRefGoogle Scholar
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35 (1), 267293.CrossRefGoogle Scholar
Gray, J.M.N.T. & Cui, X. 2007 Weak, strong and detached oblique shocks in gravity-driven granular free-surface flows. J. Fluid Mech. 579, 113136.CrossRefGoogle Scholar
Gray, J.M.N.T., Tai, Y.C. & Noelle, S. 2003 Shock waves, dead zones and particle-free regions in rapid granular free-surface flows. J. Fluid Mech. 491, 161181.CrossRefGoogle Scholar
Hákonardóttir, K.M. & Hogg, A.J. 2005 Oblique shocks in rapid granular flows. Phys. Fluids 17 (7), 077101.CrossRefGoogle Scholar
Heil, P., Rericha, E.C., Goldman, D.I. & Swinney, H.L. 2004 Mach cone in a shallow granular fluid. Phys. Rev. E 70 (6), 060301.CrossRefGoogle Scholar
Hertz, H. 1896 Miscellaneous papers by H. Hertz, Jones and Schort.Google Scholar
Holtz, T. & Muntz, E.P. 1983 Molecular velocity distribution functions in an argon normal shock wave at mach number 7. Phys. Fluids 26 (9), 24252436.CrossRefGoogle Scholar
Jaeger, H.M., Nagel, S.R. & Behringer, R.P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68 (4), 1259.CrossRefGoogle Scholar
Johnson, K.L. 1987 Contact Mechanics. Cambridge University Press.Google Scholar
Karim, M.Y. & Corwin, E.I. 2017 Universality in quasi-two-dimensional granular shock fronts above an intruder. Phys. Rev. E 95 (6), 060901.CrossRefGoogle ScholarPubMed
Khan, A., Hankare, P., Kumar, S., Kumar, R., Verma, S. & Prakash, S.P. 2019 Shocks and shock interactions in granular flow past circular cylinder. In AIAA Aviation 2019 Forum, AIAA Paper 2019-3075.Google Scholar
Khan, A., Hankare, P., Verma, S., Jaiswal, Y., Kumar, R. & Kumar, S. 2022 Detachment of strong shocks in confined granular flows. J. Fluid Mech. 936, A13.Google Scholar
Khan, A., Verma, S., Hankare, P., Kumar, R. & Kumar, S. 2020 Shock–shock interactions in granular flows. J. Fluid Mech. 884, R4.CrossRefGoogle Scholar
Kloss, C., Goniva, C., Hager, A., Amberger, S. & Pirker, S. 2012 Models, algorithms and validation for opensource DEM and CFD–DEM. Prog. Comput. Fluid Dyn. Intl J. 12 (2-3), 140152.CrossRefGoogle Scholar
Kruggel-Emden, H., Sturm, M., Wirtz, S. & Scherer, V. 2008 Selection of an appropriate time integration scheme for the discrete element method (DEM). Comput. Chem. Engng 32 (10), 22632279.CrossRefGoogle Scholar
Mazouffre, S., Vankan, P., Engeln, R. & Schram, D.C. 2001 Behavior of the h atom velocity distribution function within the shock wave of a hydrogen plasma jet. Phys. Rev. E 64 (6), 066405.CrossRefGoogle Scholar
Mott, S. & Harold, M. 1951 The solution of the Boltzmann equation for a shock wave. Phys. Rev. 82 (6), 885.CrossRefGoogle Scholar
Padgett, D.A., Mazzoleni, A.P. & Faw, S.D. 2015 Survey of shock-wave structures of smooth-particle granular flows. Phys. Rev. E 92 (6), 062209.CrossRefGoogle ScholarPubMed
Pham-Van-Diep, G., Erwin, D. & Muntz, E.P. 1989 Nonequilibrium molecular motion in a hypersonic shock wave. Science 245 (4918), 624626.CrossRefGoogle Scholar
Radjai, F., Jean, M., Moreau, J.-J. & Roux, S. 1996 Force distributions in dense two-dimensional granular systems. Phys. Rev. Lett. 77 (2), 274.CrossRefGoogle ScholarPubMed
Rericha, E.C., Bizon, C., Shattuck, M.D. & Swinney, H.L. 2001 Shocks in supersonic sand. Phys. Rev. Lett. 88 (1), 014302.CrossRefGoogle ScholarPubMed
Savage, S.B. 1988 Streaming motions in a bed of vibrationally fluidized dry granular material. J. Fluid Mech. 194, 457478.CrossRefGoogle Scholar
Savage, S.B. & Jeffrey, D.J. 1981 The stress tensor in a granular flow at high shear rates. J. Fluid Mech. 110, 255272.CrossRefGoogle Scholar
Tang, H., Song, R., Dong, Y. & Song, X. 2019 Measurement of restitution and friction coefficients for granular particles and discrete element simulation for the tests of glass beads. Materials 12 (19), 3170.CrossRefGoogle ScholarPubMed
Vilquin, A., Boudet, J.F. & Kellay, H. 2016 Structure of velocity distributions in shock waves in granular gases with extension to molecular gases. Phys. Rev. E 94 (2), 022905.CrossRefGoogle ScholarPubMed
Vilquin, A., Kellay, H. & Boudet, J.F. 2018 Shock waves induced by a planar obstacle in a vibrated granular gas. J. Fluid Mech. 842, 163187.CrossRefGoogle Scholar
Wassgren, C.R., Cordova, J.A., Zenit, R. & Karion, A. 2003 Dilute granular flow around an immersed cylinder. Phys. Fluids 15 (11), 33183330.CrossRefGoogle Scholar
Yan, Z., Wilkinson, S.K., Stitt, E.H. & Marigo, M. 2015 Discrete element modelling (DEM) input parameters: understanding their impact on model predictions using statistical analysis. Comput. Part. Mech. 2 (3), 283299.CrossRefGoogle Scholar