Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T03:48:44.402Z Has data issue: false hasContentIssue false

Nucleating bubble clouds with a pair of laser-induced shocks and bubbles

Published online by Cambridge University Press:  23 September 2013

Pedro A. Quinto-Su*
Affiliation:
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Apartado Postal 70-543, 04510 México D.F., Mexico
Keita Ando
Affiliation:
Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
*
Email address for correspondence: [email protected]

Abstract

Laser-induced optical breakdown at two spatial locations in ultrapure water saturated with ambient gas is used to nucleate microscopic bubble clouds with lifetimes of tens of nanoseconds. The liquid is ruptured via the interaction of a pair of laser-induced shocks and bubbles. We find that the acoustically nucleated micro-bubbles appear in a localized region defined by the plane that bisects the pair of foci, where rarefaction waves (reflected from the laser-induced bubbles) merge. We measure the probability for acoustic nucleation as a function of the separation between the foci, and the minimum pressures for each separation are calculated with Euler flow simulations. The simulations show that the liquid is exposed to negative pressures for 3–17 ns. A statistical threshold pressure for cavitation inception (0.5 probability) of $- 20. 1\pm 3. 4~\mathrm{MPa} $ is extracted from the measured probabilities and the calculated minimum pressures.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, F., McCluskey, F. M. J. & Denat, A. 1996 An energy model for artificially generated bubbles in liquids. J. Fluid Mech. 327, 373392.CrossRefGoogle Scholar
Ando, K., Liu, A. Q. & Ohl, C. D. 2012 Homogeneous nucleation in water in microfluidic channels. Phys. Rev. Lett. 109, 044501.CrossRefGoogle ScholarPubMed
Arvengas, A., Davitt, K. & Caupin, F. 2011 Fiber optic probe hydrophone for the study of acoustic cavitation in water. Rev. Sci. Instrum. 82, 034904.CrossRefGoogle Scholar
Bunkin, N. F. & Bunkin, F. V. 2013 Bubston structure of water and aqueous solutions of electrolytes. Phys. Wave Phenom. 21, 81109.CrossRefGoogle Scholar
Bunkin, N. F., Suyazov, N. V., Shkirin, A. V., Ignatiev, P. S. & Indukaev, K. V. 2009 Nanoscale structure of dissolved air bubbles in water as studied by measuring the elements of the scattering matrix. J. Chem. Phys 130, 134308.CrossRefGoogle ScholarPubMed
Chu, H. Y. & Chen, D. K. 2013 Observations of three-dimensional Richtmyer–Meshkov instability on a membraneless gas bubble. Phys. Rev. E 87, 051002.CrossRefGoogle ScholarPubMed
Dicker, S., Mleczko, M., Schmitz, G. & Wrenn, S. P. 2010 Determination of microbubble cavitation threshold pressure as function of shell chemistry. Bubble Sci. Eng. Technol. 2, 5564.CrossRefGoogle Scholar
Gerchberg, R. W. & Saxton, W. O. 1972 A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237246.Google Scholar
Haas, J. F. & Sturtevant, B. 1987 Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J. Fluid Mech. 181, 4176.CrossRefGoogle Scholar
Herbert, E., Balibar, S. & Caupin, F. 2006 Cavitation pressure in water. Phys. Rev. E 74, 041603.CrossRefGoogle ScholarPubMed
Jayasinghe, A. K., Rohner, J. & Hutson, M. S. 2011 Holographic UV laser microsurgery. Biomed. Opt. Express 2, 25902599.CrossRefGoogle ScholarPubMed
Johnsen, E. & Colonius, T. 2006 Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219, 715732.CrossRefGoogle Scholar
Johnsen, E. & Colonius, T. 2009 Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231262.CrossRefGoogle ScholarPubMed
Layes, G., Jourdan, G. & Houas, L. 2003 Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys. Rev. Lett. 91, 174502.CrossRefGoogle ScholarPubMed
Leighton, T. G. 1994 The Acoustic Bubble. Academic Press.Google Scholar
Maxwell, A. D., Cain, C. A., Hall, T. L., Fowlkes, J. B. & Xu, Z. 2013 Probability of cavitation for single ultrasound pulses applied to tissues and tissue-mimicking materials. Ultrasound Med. Biol. 39, 449465.CrossRefGoogle ScholarPubMed
Maxwell, A. D., Wang, T. Y., Cain, A., Fowlkes, J. B., Sapozhnikov, O. A., Bailey, M. R. & Xu, Z. 2011 Cavitation clouds created by shock scattering from bubbles during histotripsy. J. Acoust. Soc. Am. 130, 18881898.CrossRefGoogle ScholarPubMed
Ohl, C. D. & Ohl, S. W. 2013 Bubble Dynamics and Shock Waves, pp. 331. Springer.CrossRefGoogle Scholar
Quinto-Su, P. A., Huang, X. H., Gonzalez-Avila, S. R., Wu, T. & Ohl, C. D. 2010 Manipulation and microrheology of carbon nanotubes with laser-induced cavitation bubbles. Phys. Rev. Lett. 104, 014501.CrossRefGoogle ScholarPubMed
Quinto-Su, P. A. & Ohl, C. D. 2009 Interaction between two laser-induced cavitation bubbles in a quasi-two-dimensional geometry. J. Fluid Mech. 633, 425435.CrossRefGoogle Scholar
Ranjan, D., Oakley, J. & Bonazza, R. 2011 Shock–bubble interactions. Annu. Rev. Fluid Mech. 43, 117149.CrossRefGoogle Scholar
Sankin, G. N. & Teslenko, V. S. 2003 Two-threshold cavitation regime. Dokl. Phys. 48, 665668.CrossRefGoogle Scholar
Sankin, G. N., Simmons, W. N., Zhu, S. L. & Zhong, P. 2005 Shock wave interaction with laser-generated single bubbles. Phys. Rev. Lett. 95, 034501.CrossRefGoogle ScholarPubMed
Sankin, G. N., Yuan, F. & Zhong, P. 2010 Pulsating tandem microbubble for localized and directional single-cell membrane poration. Phys. Rev. Lett. 105, 078101.CrossRefGoogle ScholarPubMed
Weijs, J. H., Seddon, J. R. T. & Lohse, D. 2012 Diffusive shielding stabilizes bulk nanobubble clusters. Chem. Phys. Chem. 13, 21972204.CrossRefGoogle ScholarPubMed

Quinto-Su et al. supplementary movie

Pressure evolution along the axis of symmetry for $d=50.9$ $\mu$m

Download Quinto-Su et al. supplementary movie(Video)
Video 3.2 MB
Supplementary material: PDF

Quinto-Su et al. supplementary material

Supplementary material

Download Quinto-Su et al. supplementary material(PDF)
PDF 381.9 KB