Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T05:09:33.736Z Has data issue: false hasContentIssue false

Novel bifurcation phenomena in a rotating annulus

Published online by Cambridge University Press:  26 April 2006

S. J. Tavener
Affiliation:
Pennsylvania State University, University Park, PA 16802, USA
T. Mullin
Affiliation:
Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
K. A. Cliffe
Affiliation:
Theoretical Studies Department, Harwell Laboratory, Oxon. OX 11 ORA, UK

Abstract

We present an experimental and numerical study of a novel variant of the Taylor–Couette problem. The ends of the annular region rotate with the inner cylinder producing a strong, symmetric forcing of the flow. One consequence of the imposed forcing is that asymmetric flows are more readily found than in the standard stationary-ends case. This has led to the discovery of several new and interesting bifurcation phenomena, including codimension-two points of a type normally associated with chaos in finite-dimensional dynamical systems.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alfredsson, P. H., Johansson, A. V., Haritonidis, J. H. & Eckelmann, H. 1988 On the fluctuating wall shear stress and velocity field in the viscous sublayer. Phys. Fluids 31, 1026.Google Scholar
Breuer, K. S. 1989 Evolution of localized disturbances in laminar boundary layers In Proc. Third IUTAM Symp. on Laminar Turbulent Transition, Toulouse, Sept. 1989.
Ellingsen, T., Gjevik, B. & Palm, E. 1970 On the non-linear stability of plane Couette flow. J. Fluid Mech. 40, 97.Google Scholar
Gad El Hak, M., Blackwelder, R. F. & Riley, J. J. 1981 On the growth of turbulent regions in laminar boundary layers. J. Fluid Mech. 110, 73.Google Scholar
Gallagher, A. P. 1974 On the behaviour of small disturbances in plane Couette flow. Part 3. The phenomenon of mode-pairing. J. Fluid Mech. 65, 29.Google Scholar
Gilbert, N. 1988 Numerische Simulation der Transition von der laminaren in die turbulente Kanalströmung. Ph.D. Thesis, Fakultät für Maschinenbau der Universität Karlsruhe.
Greengaard, L. 1988 Spectral integration and two-point boundary value problems. Research Rep. YALEU/DCS/RR-646. Dept. of Comp. Science, Yale University.Google Scholar
Henningson, D. S. & Alfredsson, P. H. 1987 The wave structure of turbulent spots in plane Poiseuille flow. J. Fluid Mech. 178, 405.Google Scholar
Henningson, D. S., Johansson, A. V. & Lundbladh, A. 1989 On the evolution of localized disturbances in laminar shear flows In Proc. Third IUTAM Symp. on Laminar Turbulent Transition, Toulouse, Sept. 1989.
Henningson, D. S., Spalart, P. & Kim, J. 1987 Numerical simulations of turbulent spots in plane Poiseuille and boundary layer flows. Phys. Fluids 30, 29142917.Google Scholar
Johansson, A. V. & Alfredsson, P. H. 1982 On the structure of turbulent channel flow J. Fluid Mech. 122, 295.Google Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133.Google Scholar
Leutheusser, H. J. & Chu, V. H. 1971 Experiments on plane Couette flow. J. Hydraul. Div. ASCE 97, 1269.Google Scholar
Lindberg, P. A., Fahlgren, E. M., Alfredsson, P. H. & Johansson, A. V. 1984 An experimental study of the structure and spreading of turbulent spots. Proc Second IUTAM Symp. on Laminar Turbulent Transition, Novosibirsk, pp. 617624. Springer.
Nagata, M. 1990 Three-dimensional finite-amplitude solutions in plane Couette flow: bifurcation from infinity. J. Fluid Mech. 217, 519.Google Scholar
Orszag, S. A. & Kells, L. C. 1980 Transition to turbulence in plane Poiseuille and plane Couette flow. J. Fluid Mech. 96, 159.Google Scholar
Reichardt, H. 1956 Über die Geschwindigkeitsverteilung in einer geradlinigen turbulenten Couetteströmung. Z. Angew. Math. Mech. Sonderheft 26.Google Scholar
Riley, J. J. & Gad-el-Hak, M. 1985 The dynamics of turbulent spots. In Frontiers in Fluid Mechanics (ed. S. H. Davis & J. L. Lumley), pp. 123155. Springer.
Robertson, J. M. & Johnson, H. F. 1970 Turbulence structure in plane Couette flow. J. Enging Mech. Div. ASCE 96 (EM6), 1171.Google Scholar
Spalart, P. R. & Yang, K. 1987 Numerical study of ribbon-induced transition in Blasius flow. J. Fluid Mech. 178, 345.Google Scholar
Wygnanski, I., Zilberman, M. & Haritonidis, J. H. 1982 On the spreading of a turbulent spot in the absence of a pressure gradient. J. Fluid Mech. 123, 69.Google Scholar