Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T22:40:20.894Z Has data issue: false hasContentIssue false

A note on von Kármán's constant in low Reynolds number turbulent flows

Published online by Cambridge University Press:  29 March 2006

G. David Huffman
Affiliation:
Department of Aeronautics, Imperial College, London Present address: Detroit Diesel Allison Division, General Motors Corporation, Indianapolis.
Peter Bradshaw
Affiliation:
Department of Aeronautics, Imperial College, London

Abstract

An analysis of existing data on low Reynolds number flows strongly suggests that the conclusion of Simpson (1970) concerning the variation of von Kármás constant κ with Reynolds number is not correct. This implies that Coles’ (1962) assumption of the validity of the logarithmic velocity profile at low Reynolds numbers is correct and, moreover, that the inference drawn by Coles and later authors regarding the presence of viscous effects in the outer layer is valid. The analysis shows that these viscous effects are not present in duct flows, so that they are presumably associated with the presence of a turbulent-irrotational interface; it is argued that the ‘viscous superlayer’ can affect a large part of the outer layer at low Reynolds numbers. The data analysis incidentally shows that the viscous sublayer is more strongly affected by shear-stress gradients or transverse wall curvature than is the rest of the inner layer.

Type
Research Article
Copyright
© 1972 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Badri Narayanan, M. A. & Ramjee, V. 1969 J. Fluid Mech. 35, 225.
Black, T. J. & Sarnecki, A. J. 1958 Aero. Res. Counc. R. & M. no. 3387.
Bradshaw, P. & GEE, M. 1962 Aero. Res. Counc. R. & M. no. 3252.
Cebeci, T. 1968 Douglas Aircraft Corp. Paper, no. 5524.
Cebeci, T. & Mosinskis, G. J. 1970 Proc. A.S.M.E. Space Technology & Heat Transfer Conference, part 2.
Cebeci, T. & Smith, A. M. O. 1968 Douglas Aircraft Division Rep. DAC 67130.
Coles, D. E. 1962 Rand Corp. Rep. R-403-PR.
Coles, D. E. & Hirst, E. A. 1968 Proc. Afosr-IFP-Stanford Conference on Turbulent Boundary-Layer Prediction, vol. 2. Thermosciences Division, Stanford University.
Corrsin, S. & Kistler, A. L. 1955 N.A.C.A. Rep. no. 1244.
Fiedler, H. & Head, M. R. 1966 J. Fluid Mech. 25, 719.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 J. Fluid Mech. 50, 193.
Herring, H. J. & Mellor, G. L. 1968 N.A.S.A. Contractor Rep. N.A.S.A. CR-1144.
Huffman, G. D. 1971 Imperial College of Science and Technology Aero Rep. no. 71-06.
Jtjlien, H. L., Kays, W. M. & Moffat, R. J. 1970 Stanford University, Department of Mechanical Engineering Rep. HMT-10.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 J. Fluid Mech. 30, 741.
Laufer, J. 1950 N.A.C.A. Tech. Note, no. 2123.
Laufer, J. 1954 N.A.C.A. Rep. no. 1174.
Lawn, C. H. 1968 Central Electricity Generating Board Rep. RN RD/B/N 1232.
Mcdonald, H. 1969 J. Fluid Mech. 35, 311.
Patankar, S. V. & Spalding, D. B. 1967 Heat and Mass Transfer in Boundary Layers. Cleveland: C.R.C. Press.(Also London: Morgan-Grampian.)
Patel, V. C. & Head, M. R. 1969 J. Fluid Mech. 38, 181.
Simpson, R. L. 1970 J. Fluid Mech. 42, 769.
Starr, J. B. & Sparrow, E. M. 1967 J. Fluid Mech. 29, 495.
Townsend, A. A. 1961 J. Fluid Mech. 11, 97.
Van Driest, E. R. 1956 J. Aero. Sci. 23, 1007.
Willmarth, W. W. & Yang, C. W. 1970 J. Fluid Mech. 41, 47.