Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-06T08:15:00.275Z Has data issue: true hasContentIssue false

A note on two boundary integral formulations for particle mobilities in Stokes flow

Published online by Cambridge University Press:  26 April 2006

Sangtae Kim
Affiliation:
Department of Chemical Engineering, University of Wisconsin, Madison, WI 53706, USA
Henry Power
Affiliation:
Wessex Institute of Technology, Ashurst Lodge, Ashurst, Southampton SO4 2AA, UK Permanent address: Instituto de Mecanica de Fluidos, Universidad Central de Venezeula, Caracas, Venezuela.

Abstract

We show that a recent publication by Liron & Barta (1992) concerning a single-layer boundary integral equation for the tractions is mathematically equivalent to Karrila & Kim's (1989) Riesz method. In actual computational schemes, the second viewpoint is preferable since the integral operator has a spectral radius less than one and even large problems can be solved by fast iterative methods.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fuentes, Y. O. & Kim, S. 1992 Parallel computational microhydrodynamics: communication scheduling strategies. AIChE J. 38, 10591078.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics. Martinus Nijhoff.
Ingber, M. S. & Mondy, L. A. 1993 Direct second kind boundary integral formulation for Stokes flow problems. Comput. Mech. 11, 1127.Google Scholar
Karrila, S. J., Fuentes, Y. O. & Kim, S. 1989 Parallel computational strategies for hydrodynamic interactions between rigid particles of arbitrary shape in a viscous fluid. J. Rheol. 33, 913947.Google Scholar
Karrila, S. J. & Kim, S. 1989 Integral equations of the second kind for Stokes flow: direct solution for physical variables removal of inherent accuracy limitations. Chem. Engng Commun. 82, 123161.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth–Heinemann, Boston.
Liron, N. & Barta, E. 1992 Motion of a rigid particle in Stokes flow: a new second-kind boundary integral formulation. J. Fluid Mech. 238, 579598.Google Scholar
Odqvist, F. K. G. 1930 Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten (On the boundary value problems in hydrodynamics of viscous fluids). Math. Z. 32, 329375.Google Scholar
Power, H. & Miranda, G. 1987 Second kind integral equation formulation of Stokes' flow past a particle of arbitrary shape. SIAM J. Appl. Maths 47, 689698.Google Scholar
Youngren, G. K. & Acrivos, A. 1975 Stokes flow past a particle of arbitrary shape: a numerical method of solution. J. Fluid Mech. 69, 377403.Google Scholar