Article contents
A note on the instabilities of a horizontal shear flow with a free surface
Published online by Cambridge University Press: 10 March 2000
Abstract
The instabilities of a free surface shear flow are considered, with special emphasis on the shear flow with the velocity profile U* = U*0sech2 (by*). This velocity profile, which is found to model very well the shear flow in the wake of a hydrofoil, has been focused on in previous studies, for instance by Dimas & Triantyfallou who made a purely numerical investigation of this problem, and by Longuet-Higgins who simplified the problem by approximating the velocity profile with a piecewise-linear profile to make it amenable to an analytical treatment. However, none has so far recognized that this problem in fact has a very simple solution which can be found analytically; that is, the stability boundaries, i.e. the boundaries between the stable and the unstable regions in the wavenumber (k)–Froude number (F)-plane, are given by simple algebraic equations in k and F. This applies also when surface tension is included. With no surface tension present there exist two distinct regimes of unstable waves for all values of the Froude number F > 0. If 0 < F [Lt ] 1, then one of the regimes is given by 0 < k < (1 − F2/6), the other by F−2 < k < 9F−2, which is a very extended region on the k-axis. When F [Gt ] 1 there is one small unstable region close to k = 0, i.e. 0 < k < 9/(4F2), the other unstable region being (3/2)1/2F−1 < k < 2 + 27/(8F2). When surface tension is included there may be one, two or even three distinct regimes of unstable modes depending on the value of the Froude number. For small F there is only one instability region, for intermediate values of F there are two regimes of unstable modes, and when F is large enough there are three distinct instability regions.
- Type
- Research Article
- Information
- Copyright
- © 2000 Cambridge University Press
- 7
- Cited by