Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T21:55:26.096Z Has data issue: false hasContentIssue false

Non-normality and its consequences in active control of thermoacoustic instabilities

Published online by Cambridge University Press:  22 February 2011

RAHUL KULKARNI
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
KOUSHIK BALASUBRAMANIAN
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
R. I. SUJITH*
Affiliation:
Department of Aerospace Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
*
Email address for correspondence: [email protected]

Abstract

Non-normality can cause transient growth of perturbations in thermoacoustic systems with stable eigenvalues. This can cause low-amplitude perturbations to grow to amplitudes high enough to make nonlinear effects significant, and the system can become nonlinearly unstable, even though it is stable under classical linear stability. In this paper, we have demonstrated that this feature can lead to the failure of the traditional controllers that were designed on the basis of classical linear stability analysis. We have also shown in a simple model that it is possible to prevent ‘nonlinear driving’ by controlling transient growth, using linear controllers. The analysis is performed in the context of a horizontal Rijke tube.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Annaswamy, A. M., Fleifil, M., Hathout, J. P. & Ghoniem, A. F. 1997 Impact of linear coupling on the design of active controllers for the thermoacoustic instability. Combust. Sci. Tech. 128, 131180.CrossRefGoogle Scholar
Baggett, J. S., Driscoll, T. A. & Trefethen, L. N. 1995 A mostly linear model of transition to turbulence. Phys. Fluids 7 (4), 833838.CrossRefGoogle Scholar
Balasubramanian, K. & Sujith, R. I. 2008 a Non-normality and nonlinearity in combustion–acoustic interactions in diffusion flames. J. Fluid Mech. 594, 2957.CrossRefGoogle Scholar
Balasubramanian, K. & Sujith, R. I. 2008 b Thermoacoustic instabilities in Rijke tube: non-normality and nonlinearity. Phys. Fluids 20, 044103.CrossRefGoogle Scholar
Banaszuk, A., Jacobson, C. A., Khibnik, A. & Mehta, P. 1999 a Linear and nonlinear analysis of controlled combustion process. Part I. Linear analysis. In Proceedings of the 1999 IEEE Conference on Control Applications, 22–27 August, pp. 199205. IEEE.Google Scholar
Banaszuk, A., Jacobson, C. A., Khibnik, A. & Mehta, P. 1999 b Linear and nonlinear analysis of controlled combustion process. Part II. Nonlinear analysis. In Proceedings of the 1999 IEEE Conference on Control Applications, 22–27 August, pp. 206212. IEEE.Google Scholar
Bernier, D., Ducruix, S., Lacas, F., Candel, S., Robart, N. & Poinsot, T. 2003 Transfer function measurements in a model combustor: application to adaptive instability control. Combust. Sci. Tech. 175, 9931015.CrossRefGoogle Scholar
Bewley, T. R. & Hogberg, M. 2000 Specially localized convolution kernels for Feedback control of transitional flows. In Proceedings of 39th IEEE Conference on Decision and Control, Sydney, Australia (ed. Zhu, J. J.), pp. 32733283. IEEE.Google Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.CrossRefGoogle Scholar
Cohen, J. M., Rey, N. M., Jacobson, C. A. & Torger, J. A. 1998 Active control of combustion instability in a liquid fueled low NOx combustor. ASME Paper 98-GT-267.CrossRefGoogle Scholar
Collis, S. S., Joslin, R. D., Seifert, A. & Theofilies, V. 2004 Issues in active control: theory, control, simulation and experiment. Prog. Aeronaut. Sci. 40, 237–189.CrossRefGoogle Scholar
Crocco, L. 1952 Aspects of combustion instability in liquid propellant rockets. Am. Rocket Soc. J. 22, 1126.Google Scholar
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion oscillations. Annu. Rev. Fluid Mech. 37, 151182.CrossRefGoogle Scholar
Farrrell, B. & Ioannou, P. 1996 Turbulence suppression by active control. Phys. Fluids 8 (5), 12571268.CrossRefGoogle Scholar
Fleifil, M., Hathout, J. P., Annaswamy, A. M. & Ghoniem, A. F. 1998 The origin of secondary peaks with active control of thermoacoustic instability. Combust. Sci. Technol. 133, 227265.CrossRefGoogle Scholar
Handel, A. 2004 Limits of localized control in extended nonlinear systems. PhD Thesis, School of Physics, Georgia Institute of Technology, Atlanta, GA.Google Scholar
Heckl, M. A. 1990 Non-linear acoustic effects in the Rijke tube. Acustica 72, 6371.Google Scholar
Hibshman, J. R., Cohen, J. M. & Banaszuk, A. 1999 Active control of combustion instability in a liquid-fueled sector combustor. ASME Paper 99-GT-215.CrossRefGoogle Scholar
Kaufmann, A., Nicoud, F. & Poinsot, T. 2002 Flow forcing techniques for numerical simulation of combustion instabilities. Combust. Flame 131, 371385.CrossRefGoogle Scholar
Kopitz, J. & Polifke, W. 2005 CFD based analysis of thermoacoustic instabilities by determination of open-loop-gain. Paper No. 389. In 12th International Congress on Sound and Vibration, Lisbon, Portugal, the International Institute of Acoustics and Vibration.Google Scholar
Koshigoe, S., Komatsuzaki, T. & Yang, V. 1999 Active control of combustion instability with on-line system identification. J. Propul. Power 15 (3), 383389.CrossRefGoogle Scholar
Lang, W., Poinsot, T. & Candel, S. 1987 Active control of combustion instability Combust. Flame 70, 281289.CrossRefGoogle Scholar
Mcmanus, K. R., Poinsot, T. & Candel, S. 1993 A review of active control combustion instabilities. Prog. Energy Combust. Sci. 19, 129.CrossRefGoogle Scholar
Murugappan, S., Gutmark, E. J., Acharya, S. & Krstic, M. 2000 Extremum-seeking adaptive controller for swirl-stabilized spray combustion. Proc. Combust. Inst. 28, 731737.CrossRefGoogle Scholar
Nagaraja, S., Kedia, K. & Sujith, R. I. 2008 Characterizing energy growth during combustion instabilities: singularvalues or eigenvalues? Proc. Combust. Inst. 32 (2), 29332940.CrossRefGoogle Scholar
Nicoud, F., Benoit, L., Sensiau, C. & Poinsot, T. 2007 Acoustic modes in combustor with complex impedances and multidimensional active flames. AIAA J. 45 (2), 426441.CrossRefGoogle Scholar
Nicoud, F. & Wieczorek, K. 2009 About the zero Mach number assumption in the calculation of thermoacoustic instabilities. Intl J. Spray Combust. Dyn. 1 (1), 67111.CrossRefGoogle Scholar
Rayleigh, Lord 1878 The explanation of certain acoustical phenomenon. Nature 18, 319321.CrossRefGoogle Scholar
Richards, G. A. & Straub, D. L. 2005 Passive control of combustion instabilities in stationary gas turbines. In Combustion Instabilities in Gas turbine Engines: Operational Experience, Fundamental Mechanism and Modeling (ed. Lieuwen, T. C. & Yang, V.), chapter 17, pp. 533575. AIAA.Google Scholar
Schmid, P. J. & Henningson, D. D. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra. Princeton University Press.CrossRefGoogle Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261, 578584.CrossRefGoogle ScholarPubMed
Whidborne, J. & Mckernan, J. 2007 On the minimization of maximum transient energy growth. IEEE Trans. Autom. Control 52 (9), 17621767.CrossRefGoogle Scholar
Zhao, H. & Bau, H. H. 2006 Limitations of linear control of thermal convection in a porous medium. Phys. Fluids 18, 112.CrossRefGoogle Scholar