Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T06:11:04.606Z Has data issue: false hasContentIssue false

Nonlinear Rayleigh–Bénard convection with square planform

Published online by Cambridge University Press:  20 April 2006

Wayne Arter
Affiliation:
Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge, CB3 9EW Present address: Culham Laboratory, Abingdon, Oxon, OX14 3DB (UKAEA/Euratom Fusion Association).

Abstract

Fully three-dimensional numerical solutions are presented for Rayleigh-Bénard convection subject to stress-free boundary conditions. A motion with square planform is studied for varying Rayleigh number R and Prandtl number σ. It may be understood partly in terms of a truncated modal representation (after Lorenz 1963). Thermal layers of unusual structure are found at high R. For small σ, steady solutions exist, but are not of ‘flywheel’ type, and the heat transport depends strongly on σ. The study also verifies that laminar convective flows may be ergodic.

Type
Research Article
Copyright
© 1985 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. & Behringer, R. P. 1978 Evidence of turbulence from the Rayleigh-Bénard instability. Phys. Rev. Lett. 40, 712715.Google Scholar
Arnold, V. 1966 Sur la géometrie differentielle des groups de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits. Ann. Inst. Fourier Grenoble 16, 319361.Google Scholar
Arnold, V. I. 1972 Notes on the three-dimensional flow pattern of a perfect fluid in the presence of a small perturbation of the initial velocity field. Prikl. Mat. Mekh. 36, 255262 [English transl. Appl. Math. Mech. 36, 236–242].Google Scholar
Arter, W. 1982 Convective motions in an imposed horizontal magnetic field. PhD thesis, University of Cambridge.
Arter, W. 1983a Magnetic flux transport by a convecting layer- topological, geometrical and compressible phenomena. J. Fluid Mech. 132, 2548.Google Scholar
Arter, W. 1983b Ergodic stream-lines in steady convection. Phys. Lett 97A, 171174.Google Scholar
Arter, W. 1984a Magnetic flux transport by a convecting layer including dynamical effects. Geophys. Astrophys. Fluid Dyn. (in press).
Busse, F. H. 1967 The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625649.Google Scholar
Busse, F. H. 1972 The oscillatory instability of convection rolls in a low Prandtl number fluid. J. Fluid Mech. 52, 97112.Google Scholar
Busse, F. H. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41, 19291967.Google Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon.
Cooley, J. W., Lewis, P. A. W. & Welch, P. D. 1970 The fast Fourier transform algorithm: programming considerations in the calculation of sine, cosine and Laplace transforms. J. Sound Vib. 12, 315337.Google Scholar
Cross, M. C. 1982 Ingredients of a theory of convective textures close to onset. Phys. Rev. A 25, 10651076.Google Scholar
Cross, M. C. 1983 Phase dynamics of convective rolls. Phys. Rev. A 26, 490498.Google Scholar
Cross, M. C., Daniels, P. G., Hohenberg, P. C. & Siggia, E. D. 1983 Phase-winding solutions in a finite container above the convective threshold. J. Fluid Mech. 127, 155183.Google Scholar
Deardorff, J. W. & Willis, G. E. 1967 Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28, 675704.Google Scholar
Drobyshevski, E. M. & Yuferev, V. S. 1974 Topological pumping of magnetic flux by three-dimensional convection. J. Fluid Mech. 65, 3344.Google Scholar
Frick, H., Busse, F. H. & Clever, R. M. 1983 Steady three-dimensional convection at high Prandtl numbers. J. Fluid Mech. 127, 141153.Google Scholar
Garrett, C. 1983 On the initial streakiness of a dispersing tracer in two- and three-dimensional turbulence. Dyn. Atmos. Oceans 7, 265277.Google Scholar
Gough, D. O. 1977 Stellar convection. In Problems of Stellar Convection (ed. E. A. Spiegel & J.-P. Zahn). Lecture Notes in Physics, vol. 71, pp. 349363. Springer.
Greenside, H. S., Coughran, W. M. & Schryer, N. L. 1982 Nonlinear pattern formation near the onset of Rayleigh-Bénard convection. Phys. Rev. Lett. 49, 726729.Google Scholar
GrÖtzbach, G. 1982 Direct numerical simulation of laminar and turbulent Bénard convection. J. Fluid Mech. 119, 2753.Google Scholar
GrÖtzbach, G. 1983 Spatial resolution requirements for direct numerical simulation of Rayleigh-Bénard convection. J. Comp. Phys. 49, 241264.Google Scholar
Hénon, M. 1966 Sur la topologie des lignes de courant dans un case particulier. C. R. Acad. Sci. Paris A 262, 312314.Google Scholar
Hockney, R. W. & Jesshope, C. R. 1981 Parallel Computers. Adam Hilger.
Jenkins, D. R. & Proctor, M. R. E. 1984 The transition from roll to square-cell solutions in Rayleigh-Bénard convection. J. Fluid Mech. 139, 461471.Google Scholar
Jhaveri, B. & Homsy, G. M. 1980 Randomly forced Rayleigh-Bénard convection. J. Fluid Mech. 98, 329348.Google Scholar
Jones, C. A., Moore, D. R. & Weiss, N. O. 1976 Axisymmetric convection in a cylinder. J. Fluid Mech. 73, 353388.Google Scholar
Krishnamurti, R. 1970 On the transition to turbulent convection. Part 1. The transition from two-to three-dimensional flow. J. Fluid Mech. 42, 295307.Google Scholar
Krishnamurti, R. 1973 Some further studies on the transition to turbulent convection. J. Fluid Mech. 60, 285303.Google Scholar
Lipps, F. B. 1976 Numerical simulation of three-dimensional Bénard convection in air. J. Fluid Mech. 75, 113148.Google Scholar
Lipps, F. B. & Somerville, R. C. J. 1971 Dynamics of variable wavelength in finite-amplitude Bénard convection. Phys. Fluids 14, 759765.Google Scholar
Lorenz, E. N. 1963 Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130141.Google Scholar
Mclaughlin, J. B. & Orszag, S. A. 1982 Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122, 123142.Google Scholar
Malkus, W. V. R. & Veronis, G. 1958 Finite-amplitude cellular convection. J. Fluid Mech. 4, 225260.Google Scholar
Moore, D. R. & Weiss, N. O. 1973 Two-dimensional Rayleigh-Bénard convection. J. Fluid Mech. 58, 289312.Google Scholar
Moore, D. R., Peckover, R. S. & Weiss, N. O. 1973 Difference methods for time-dependent two-dimensional convection. Comp. Phys. Commun. 6, 198220.Google Scholar
Orszag, S. A. 1971 Numerical simulation of incompressible flows within simple boundaries. I. Galerkin (spectral) representations. Stud. Appl. Maths 50, 293327.Google Scholar
Ozoe, H., Yamamoto, D., Churchill, S. W. & Sayama, H. 1976 Three-dimensional numerical analysis of laminar natural convection in a confined fluid heated from below. Trans. ASME C: J. Heat Transfer 98, 202207Google Scholar
Ozoe, H., Sato, N. & Churchill, S. 1979 Experimental confirmation of the three-dimensional streaklines previously computed for natural convection in inclined rectangular enclosures. Intl Chem. Engng 19, 454462.Google Scholar
Peyret, R. & Taylor, T. D. 1983 Computational Methods for Fluid Flow. Springer.
Riahi, N. 1981 Boundary-layer solutions of single-mode convection equations. J. Fluid Mech. 102, 211219.Google Scholar
Roberts, K. V. & Weiss, N. O. 1966 Convective difference schemes. Math. Comp. 20, 272299.Google Scholar
SchlÜter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129144.Google Scholar
Stuart, J. T. 1964 On the cellular patterns in thermal convection. J. Fluid Mech. 18, 481498.Google Scholar
Toomre, J., Gough, D. O. & Spiegel, E. A. 1982 Solutions of multimode convection equations. J. Fluid Mech. 125, 99122.Google Scholar
Veltishchev, N. F. & Zelnin, A. A. 1975 Numerical solution of cellular convection in air. J. Fluid Mech. 68, 353368.Google Scholar
Veronis, G. 1966 Large amplitude Bénard convection. J. Fluid Mech. 26, 4968.Google Scholar
Weiss, N. O. 1966 The expulsion of magnetic flux by eddies. Proc. R. Soc. Land. A 293, 310328.Google Scholar
Whiteman, K. J. 1977 Invariants and stability in classical mechanics. Rep. Prog. Phys. 40, 10331069.Google Scholar
Zippelius, A. & Siggia, E. D. 1982 Disappearance of stable convection between stress-free boundaries. Phys. Rev. A 26, 17881790.Google Scholar