Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T21:14:58.035Z Has data issue: false hasContentIssue false

Nonlinear free-surface flow due to an impulsively started submerged point sink

Published online by Cambridge University Press:  10 June 1998

MING XUE
Affiliation:
Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
DICK K. P. YUE
Affiliation:
Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

The unsteady fully nonlinear free-surface flow due to an impulsively started submerged point sink is studied in the context of incompressible potential flow. For a fixed (initial) submergence h of the point sink in otherwise unbounded fluid, the problem is governed by a single non-dimensional physical parameter, the Froude number, [Fscr ]≡Q/4π(gh5)1/2, where Q is the (constant) volume flux rate and g the gravitational acceleration. We assume axisymmetry and perform a numerical study using a mixed-Eulerian–Lagrangian boundary-integral-equation scheme. We conduct systematic simulations varying the parameter [Fscr ] to obtain a complete quantification of the solution of the problem. Depending on [Fscr ], there are three distinct flow regimes: (i) [Fscr ]<[Fscr ]1≈0.1924 – a ‘sub-critical’ regime marked by a damped wave-like behaviour of the free surface which reaches an asymptotic steady state; (ii) [Fscr ]1<[Fscr ]<[Fscr ]2≈0.1930 – the ‘trans-critical’ regime characterized by a reversal of the downward motion of the free surface above the sink, eventually developing into a sharp upward jet; (iii) [Fscr ]>[Fscr ]2 – a ‘super-critical’ regime marked by the cusp-like collapse of the free surface towards the sink. Mechanisms behind such flow behaviour are discussed and hydrodynamic quantities such as pressure, power and force are obtained in each case. This investigation resolves the question of validity of a steady-state assumption for this problem and also shows that a small-time expansion may be inadequate for predicting the eventual behaviour of the flow.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)