Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T22:40:26.980Z Has data issue: false hasContentIssue false

Nonlinear evolution and acoustic radiation of coherent structures in subsonic turbulent free shear layers

Published online by Cambridge University Press:  05 December 2019

Zhongyu Zhang
Affiliation:
Laboratory of High-Speed Aerodynamics, School of Mechanical Engineering, Tianjin University, Tianjin300072, PR China
Xuesong Wu*
Affiliation:
Laboratory of High-Speed Aerodynamics, School of Mechanical Engineering, Tianjin University, Tianjin300072, PR China Department of Mathematics, Imperial College London, 180 Queen’s Gate, LondonSW7 2AZ, UK
*
Email address for correspondence: [email protected]

Abstract

Large-scale coherent structures are present in compressible free shear flows, where they are known to be a main source of aerodynamic noise. Previous studies showed that these structures may be treated as instability waves or wavepackets supported by the underlying turbulent mean flow. By adopting this viewpoint in the framework of triple decomposition of the instantaneous flow into the mean field, coherent motion and small-scale turbulence, a strongly nonlinear dynamical model was constructed to describe the formation and development of coherent structures in incompressible turbulent free shear layers (Wu & Zhuang, J. Fluid Mech., vol. 787, 2016, pp. 396–439). That model is now extended to compressible flows, for which the coherent structures are extracted through a density-weighted (Favre) phase average. The nonlinear non-equilibrium critical-layer theory for instability waves in a laminar compressible mixing layer is adapted to analyse coherent structures in its turbulent counterpart. The strong non-parallelism associated with the fast spreading of the turbulent mean flow is taken into account and found to be significant. The model also accounts for the effect of fine-scale turbulence on coherent structures via a gradient type of closure model which now allows for a phase lag between the phase-averaged small-scale Reynolds stresses and the strain rates of coherent structures. The analysis results in an evolution system comprising of an amplitude equation, the critical-layer temperature and vorticity equations along with the appropriate initial and boundary conditions. The physical processes of acoustic radiation from the coherent structures are described by examining the far-field asymptote of the hydrodynamic fluctuations. We demonstrate that the nonlinearly generated slowly breathing mean-flow distortion radiates low-frequency sound waves. The true physical sources are identified. Equivalent sources in a Lighthill type of acoustic analogy context also arise, but they cannot be fully determined before the acoustic field is calculated, in which sense the radiated sound waves act back on the source. The numerical solutions to the evolution system show that coherent structures attenuate nonlinearly and their vorticity field rolls up to form the characteristic rollers. A study is also made of coherent structures represented by modulated wavetrains consisting of sideband modes, in which case nonlinear interactions generate components with frequencies that are combinations of those of the dominant modes. These components, especially the difference-frequency one, acquire significant amplitudes. Finally, the directivity and spectrum of the emitted acoustic field are calculated for both cases where the coherent structures consist of discrete, and a continuum of, sideband modes.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A., Chambers, A. J., Britz, D. & Browne, L. W. B. 1986 Organized structures in a turbulent plane jet: topology and contribution to momentum and heat transport. J. Fluid Mech. 172, 211229.CrossRefGoogle Scholar
Baqui, Y. B., Agarwal, A., Cavalieri, A. V. G. & Sinayoko, S. 2015 A coherence-matched linear source mechanism for subsonic jet noise. J. Fluid Mech. 776, 235267.CrossRefGoogle Scholar
Bechert, D. & Pfizenmaier, E. 1975 On the amplification of broad band jet noise by a pure tone excitation. J. Sound Vib. 43 (3), 581587.CrossRefGoogle Scholar
Bechert, D. W. & Pfizenmaier, E. 1977 Amplification of jet noise by a higher-mode acoustical excitation. AIAA J. 15 (9), 12681271.CrossRefGoogle Scholar
Beneddine, S., Sipp, D., Arnault, A., Dandois, J. & Lesshafft, L. 2016 Conditions for validity of mean flow stability analysis. J. Fluid Mech. 798, 485504.CrossRefGoogle Scholar
Bradshaw, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9 (1), 3352.CrossRefGoogle Scholar
Bridges, J. & Hussain, F. 1992 Direct evaluation of aeroacoustic theory in a jet. J. Fluid Mech. 240, 469501.CrossRefGoogle Scholar
Bridges, J. E. & Hussain, A. K. M. F. 1987 Roles of initial condition and vortex pairing in jet noise. J. Sound Vib. 117 (2), 289311.CrossRefGoogle Scholar
Brown, G. L. & Roshko, A. 1974 On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64, 775816.CrossRefGoogle Scholar
Cantwell, B. J. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13, 457515.CrossRefGoogle Scholar
Cavalieri, A. V. G. & Agarwal, A. 2014 Coherence decay and its impact on sound radiation by wavepackets. J. Fluid Mech. 748, 399415.CrossRefGoogle Scholar
Cavalieri, A. V. G., Jordan, P., Agarwal, A. & Gervais, Y. 2011 Jittering wave-packet models for subsonic jet noise. J. Sound Vib. 330 (18–19), 44744492.CrossRefGoogle Scholar
Cavalieri, A. V. G., Jordan, P., Colonius, T. & Gervais, Y. 2012 Axisymmetric superdirectivity in subsonic jets. J. Fluid Mech. 704, 388420.CrossRefGoogle Scholar
Cavalieri, A. V. G., Jordan, P., Gervais, Y., Wei, M. & Freund, J. B. 2010 Intermittent sound generation and its control in a free-shear flow. Phys. Fluids 22 (11), 115113.CrossRefGoogle Scholar
Cavalieri, A. V. G., Jordan, P. & Lesshafft, L. 2019 Wave-packet models for jet dynamics and sound radiation. Appl. Mech. Rev. 71 (2), 020820.CrossRefGoogle Scholar
Cavalieri, A. V. G., Rodriguez, D., Jordan, P., Colonius, T. & Gervais, Y. 2013 Wavepackets in the velocity field of turbulent jets. J. Fluid Mech. 730, 559592.CrossRefGoogle Scholar
Cheung, L. C. & Lele, S. K. 2009 Linear and nonlinear processes in two-dimensional mixing layer dynamics and sound radiation. J. Fluid Mech. 625, 321351.CrossRefGoogle Scholar
Clemens, N., Mungal, M., Berger, T. & Vandsburger, U.1990 Visualizations of the structure of the turbulent mixing layer under compressible conditions. AIAA Paper 1990-0709.CrossRefGoogle Scholar
Clemens, N. T. & Mungal, M. G. 1992 Two- and three-dimensional effects in the supersonic mixing layer. AIAA J. 30 (4), 973981.CrossRefGoogle Scholar
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.CrossRefGoogle Scholar
Cohen, J., Marasli, B. & Levinski, V. 1994 The interaction between the mean flow and coherent structures in turbulent mixing layers. J. Fluid Mech. 260, 8194.CrossRefGoogle Scholar
Colonius, T., Lele, S. K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.CrossRefGoogle Scholar
Cowley, S. J. 1985 Pulsatile flow through distorted channels: low-Strouhal-number and translating-critical-layer effects. Q. J. Mech. Appl. Maths. 38 (4), 589619.CrossRefGoogle Scholar
Crawley, M., Gefen, L., Kuo, C. W., Samimy, M. & Camussi, R. 2018 Vortex dynamics and sound emission in excited high-speed jets. J. Fluid Mech. 839, 313347.CrossRefGoogle Scholar
Crighton, D. G. & Huerre, P. 1990 Shear-layer pressure fluctuations and superdirective acoustic sources. J. Fluid Mech. 220, 355368.CrossRefGoogle Scholar
Crow, S. C. 1970 Aerodynamic sound emission as a singular perturbation problem. Stud. Appl. Maths 49 (1), 2146.CrossRefGoogle Scholar
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48, 547591.CrossRefGoogle Scholar
Dimotakis, P. E. & Brown, G. L. 1976 The mixing layer at high Reynolds number: large-structure dynamics and entrainment. J. Fluid Mech. 78, 535560.CrossRefGoogle Scholar
Elliott, G. S. & Samimy, M. 1990 Compressibility effects in free shear layers. Phys. Fluids A 2 (7), 12311240.CrossRefGoogle Scholar
Elliott, G. S., Samimy, M. & Arnette, S. A. 1995 The characteristics and evolution of large-scale structures in compressible mixing layers. Phys. Fluids 7 (4), 864876.CrossRefGoogle Scholar
Ffowcs Williams, J. E. & Kempton, A. J. 1978 The noise from the large-scale structure of a jet. In Structure and Mechanisms of Turbulence II, pp. 265272. Springer.CrossRefGoogle Scholar
Fu, Z., Agarwal, A., Cavalieri, A. V. G., Jordan, P. & Brès, G. A. 2017 Turbulent jet noise in the absence of coherent structures. Phys. Rev. Fluids 2 (6), 064601.CrossRefGoogle Scholar
Fuchs, H. V. & Michel, U. 1978 Experimental evidence of turbulent source coherence affecting jet noise. AIAA J. 16 (9), 871872.CrossRefGoogle Scholar
Garnaud, X., Lesshafft, L., Schmid, P. J. & Huerre, P. 2013 The preferred mode of incompressible jets: linear frequency response analysis. J. Fluid Mech. 716, 189202.CrossRefGoogle Scholar
Gaster, M., Kit, E. & Wygnanski, I. 1985 Large-scale structures in a forced turbulent mixing layer. J. Fluid Mech. 150, 2339.CrossRefGoogle Scholar
Goldstein, M. E. 1984 Aeroacoustics of turbulent shear flows. Annu. Rev. Fluid Mech. 16 (1), 263285.CrossRefGoogle Scholar
Goldstein, M. E. & Hultgren, L. S. 1988 Nonlinear spatial evolution of an externally excited instability wave in a free shear layer. J. Fluid Mech. 197, 295330.CrossRefGoogle Scholar
Goldstein, M. E. & Leib, S. J. 1988 Nonlinear roll-up of externally excited free shear layers. J. Fluid Mech. 191, 481515.CrossRefGoogle Scholar
Goldstein, M. E. & Leib, S. J. 1989 Nonlinear evolution of oblique waves on compressible shear layers. J. Fluid Mech. 207, 7396.CrossRefGoogle Scholar
Gudmundsson, K. & Colonius, T. 2011 Instability wave models for the near-field fluctuations of turbulent jets. J. Fluid Mech. 689, 97128.CrossRefGoogle Scholar
Haberman, R. 1972 Critical layers in parallel shear flows. Stud. Appl. Maths 51, 139161.CrossRefGoogle Scholar
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.CrossRefGoogle Scholar
Haynes, P. H. & Cowley, S. J. 1986 The evolution of an unsteady translating nonlinear Rossby-wave critical layer. Geophys. Astrophys. Fluid Dyn. 35 (1–4), 155.CrossRefGoogle Scholar
Hileman, J. I., Thurow, B. S., Caraballo, E. J. & Samimy, M. 2005 Large-scale structure evolution and sound emission in high-speed jets: real-time visualization with simultaneous acoustic measurements. J. Fluid Mech. 544, 277307.CrossRefGoogle Scholar
Hultgren, L. S. 1992 Nonlinear spatial equilibration of an externally excited instability wave in a free shear layer. J. Fluid Mech. 236, 635664.CrossRefGoogle Scholar
Hussain, A. K. M. F. 1983 Coherent structures – reality and myth. Phys. Fluids 26, 28162850.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Clark, A. R. 1981 On the coherent structure of the axisymmetric mixing layer: a flow-visualization study. J. Fluid Mech. 104, 263294.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Hasan, M. A. Z. 1985 Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150, 159168.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970 The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241258.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1972 The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results. J. Fluid Mech. 54, 241261.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Thompson, C. A. 1980 Controlled symmetric perturbation of the plane jet: an experimental study in the initial region. J. Fluid Mech. 100, 397431.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1981 The ‘preferred mode’ of the axisymmetric jet. J. Fluid Mech. 110, 3971.CrossRefGoogle Scholar
Hussain, A. K. M. F. & Zaman, K. B. M. Q. 1985 An experimental study of organized motions in the turbulent plane mixing layer. J. Fluid Mech. 159, 85104.CrossRefGoogle Scholar
Jackson, T. L. & Grosch, C. E. 1989 Effect of Heat Release and Equivalence Ratio on the Inviscid Spatial Stability of a Supersonic Reacting Mixing Layer. Springer.CrossRefGoogle Scholar
Jeun, J., Nichols, J. W. & Jovanović, M. R. 2016 Input-output analysis of high-speed axisymmetric isothermal jet noise. Phys. Fluids 28 (4), 047101.CrossRefGoogle Scholar
Jordan, P. & Colonius, T. 2013 Wave packets and turbulent jet noise. Annu. Rev. Fluid Mech. 45, 173195.CrossRefGoogle Scholar
Jordan, P., Zhang, M., Lehnasch, G. & Cavalieri, A. V. G. 2017 Modal and non-modal linear wavepacket dynamics in turbulent jets. In 23rd AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Juvé, D., Sunyach, M. & Comte-Bellot, G. 1980 Intermittency of the noise emission in subsonic cold jets. J. Sound Vib. 71 (3), 319332.CrossRefGoogle Scholar
Kawahara, G., Uhlmann, M. & Van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44 (1), 203225.CrossRefGoogle Scholar
Kearney-Fischer, M., Sinha, A. & Samimy, M. 2013 Intermittent nature of subsonic jet noise. AIAA J. 51 (5), 11421155.CrossRefGoogle Scholar
Kerhervé, F., Jordan, P., Cavalieri, A. V. G., Delville, J., Bogey, C. & Juvé, D. 2012 Educing the source mechanism associated with downstream radiation in subsonic jets. J. Fluid Mech. 710, 606640.CrossRefGoogle Scholar
Kerswell, R. R. 2005 Recent progress in understanding the transition to turbulence in a pipe. Nonlinearity 18 (6), R17R44.CrossRefGoogle Scholar
Kibens, V. 1980 Discrete noise spectrum generated by acoustically excited jet. AIAA J. 18 (4), 434441.CrossRefGoogle Scholar
Leib, S. J. 1991 Nonlinear evolution of subsonic and supersonic disturbances on a compressible free shear layer. J. Fluid Mech. 224, 551578.CrossRefGoogle Scholar
Liu, J. T. C. 1974 Developing large-scale wavelike eddies and the near jet noise field. J. Fluid Mech. 62, 437464.CrossRefGoogle Scholar
Liu, J. T. C. 1989 Cohenrent structures in transitional and turbulent free shear flows. Annu. Rev. Fluid Mech. 21, 285315.CrossRefGoogle Scholar
Marasli, B., Champagne, F. H. & Wygnanski, I. J. 1989 Modal decomposition of velocity signals in a plane, turbulent wake. J. Fluid Mech. 198, 255273.CrossRefGoogle Scholar
Marasli, B., Champagne, F. H. & Wygnanski, I. J. 1991 On linear evolution of unstable disturbances in a plane turbulent wake. Phys. Fluids 3, 665674.CrossRefGoogle Scholar
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.CrossRefGoogle Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Meyer, T. R., Dutton, J. C. & Lucht, R. P. 2006 Coherent structures and turbulent molecular mixing in gaseous planar shear layers. J. Fluid Mech. 558, 179205.CrossRefGoogle Scholar
Miksad, R. W. 1973 Experiments on nonlinear interactions in the transition of a free shear layer. J. Fluid Mech. 59, 121.CrossRefGoogle Scholar
Moore, C. J. 1977 The role of shear-layer instability waves in jet exhaust noise. J. Fluid Mech. 80, 321367.CrossRefGoogle Scholar
Nicholas, J. W. & Lele, S. K. 2011 Global modes and transient response of a cold supersonic jet. J. Fluid Mech. 669, 225241.CrossRefGoogle Scholar
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.CrossRefGoogle Scholar
Persh, J. & Lee, R.1956 Tabulation of compressible turbulent boundary layer parameters. Tech. Rep. NAVORD Rep. 4282 (Aeroballistic Res. Rep. 337), U.S. Naval Ordnance Laboratory.Google Scholar
Ragab, S. A. & Wu, J. L. 1989 Linear instability waves in supersonic turbulent shear layer. AIAA J. 27 (6), 677686.CrossRefGoogle Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.CrossRefGoogle Scholar
Samimy, M., Kim, J. H., Kearney-Fischer, M. & Sinha, A. 2010 Acoustic and flow fields of an excited high Reynolds number axisymmetric supersonic jet. J. Fluid Mech. 656, 507529.CrossRefGoogle Scholar
Samimy, M., Reeder, M. F. & Elliott, G. S. 1992 Compressibility effects on large structures in free shear flows. Phys. Fluids A 4 (6), 12511258.CrossRefGoogle Scholar
Sandham, N. D., Morfey, C. L. & Hu, Z. W. 2006 Sound radiation from exponentially growing and decaying surface waves. J. Sound Vib. 294 (1–2), 355361.CrossRefGoogle Scholar
Sandham, N. D. & Reynolds, W. C. 1991 Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.CrossRefGoogle Scholar
Sandham, N. D. & Salgado, A. M. 2008 Nonlinear interaction model of subsonic jet noise. Phil. Trans. R. Soc. Lond. A 366 (1876), 27452760.CrossRefGoogle ScholarPubMed
Sasaki, K., Cavalieri, A. V. G., Jordan, P., Schmidt, O. T., Colonius, T. & Brès, G. A. 2017 High-frequency wavepackets in turbulent jets. J. Fluid Mech. 830, R2.CrossRefGoogle Scholar
Scarano, F. & Van Oudheusden, B. W. 2003 Planar velocity measurements of a two-dimensional compressible wake. Exp. Fluids 34 (3), 430441.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary-layer Theory, 7th edn. McGraw Hill.Google Scholar
Schmidt, O. T., Towne, A., Colonius, T., Cavalieri, A. V. G., Jordan, P. & Brès, G. A. 2017 Wavepackets and trapped acoustic modes in a turbulent jet: coherent structure eduction and global stability. J. Fluid Mech. 825, 11531181.CrossRefGoogle Scholar
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.CrossRefGoogle Scholar
Sinha, A., Rodríguez, D., Brès, G. A. & Colonius, T. 2014 Wavepacket models for supersonic jet noise. J. Fluid Mech. 742, 7195.CrossRefGoogle Scholar
Sparks, C. A. & Wu, X. 2008 Nonlinear development of subsonic modes on compressible mixing layers: a unified strongly nonlinear critical-layer theory. J. Fluid Mech. 614, 105144.CrossRefGoogle Scholar
Suponitsky, V., Sandham, N. D. & Morfey, C. L. 2010 Linear and nonlinear mechanisms of sound radiation by instability waves in subsonic jets. J. Fluid Mech. 658, 509538.CrossRefGoogle Scholar
Suzuki, T. & Colonius, T. 2006 Instability waves in a subsonic round jet detected using a near-field phased microphone array. J. Fluid Mech. 565, 197226.CrossRefGoogle Scholar
Tam, C. K. W. 1991 Broadband shock-associated noise from supersonic jets in flight. J. Sound Vib. 151 (1), 131147.CrossRefGoogle Scholar
Tam, C. K. W. & Burton, D. E. 1984 Sound generated by instability waves of supersonic flow. Part 2. Axisymmetric jets. J. Fluid Mech. 138, 273295.CrossRefGoogle Scholar
Tam, C. K. W. & Morris, P. J. 1980 The radiation of sound by the instability waves of a compressible plane turbulent shear layer. J. Fluid Mech. 98, 349381.CrossRefGoogle Scholar
Thurow, B., Samimy, M. & Lempert, W. 2003 Compressibility effects on turbulence structures of axisymmetric mixing layers. Phys. Fluids 15 (6), 17551765.CrossRefGoogle Scholar
Tissot, G., Zhang, M., Lajús, F. C., Cavalieri, A. V. G. & Jordan, P. 2016 Sensitivity of wavepackets in jets to nonlinear effects: the role of the critical layer. J. Fluid Mech. 811, 95137.CrossRefGoogle Scholar
Towne, A., Colonius, T., Jordan, P., Cavalieri, A. V. & Brès, G. A. 2015 Stochastic and nonlinear forcing of wavepackets in a Mach 0.9 jet. In 21st AIAA/CEAS Aeroacoustics Conference. American Institute of Aeronautics and Astronautics.Google Scholar
Van Driest, E. R. 1951 Turbulent boundary layer in compressible fluids. J. Aero. Sci. 18 (3), 145160; 216.CrossRefGoogle Scholar
Wu, X. 2005 Mach wave radiation of nonlinearly evolving supersonic instability modes in shear layers. J. Fluid Mech. 523, 121159.CrossRefGoogle Scholar
Wu, X. 2011 On generation of sound in wall-bounded shear flows: back action of sound and global acoustic coupling. J. Fluid Mech. 689, 279316.CrossRefGoogle Scholar
Wu, X. 2019 Nonlinear theories for shear-flow instabilities: physical insights and practical implications. Annu. Rev. Fluid Mech. 51, 421485.CrossRefGoogle Scholar
Wu, X. & Hogg, L. W. 2006 Acoustic radiation of Tollmien–Schlichting waves as they undergo rapid distortion. J. Fluid Mech. 550, 307347.CrossRefGoogle Scholar
Wu, X. & Huerre, P. 2009 Low-frequency sound radiated by a nonlinear modulated wavepacket of helical modes on a subsonic circular jet. J. Fluid Mech. 637, 173211.CrossRefGoogle Scholar
Wu, X. & Tian, F. 2012 Spectral broadening and flow randomization in free shear layers. J. Fluid Mech. 706, 431469.CrossRefGoogle Scholar
Wu, X. & Zhou, H. 1989 Linear instability of turbulent boundary layer as a mechanism for the generation of large scale coherent structures. Chinese Sci. Bull. 34 (20), 16851688.Google Scholar
Wu, X. & Zhuang, X. 2016 Nonlinear dynamics of large-scale coherent structures in turbulent free shear layers. J. Fluid Mech. 787, 396439.CrossRefGoogle Scholar
Wygnanski, I. J. & Petersen, R. A. 1987 Coherent motion in excited free shear flows. AIAA J. 25, 201213.CrossRefGoogle Scholar
Zaman, K. B. M. Q. 1985 Far-field noise of a subsonic jet under controlled excitation. J. Fluid Mech. 152, 83111.CrossRefGoogle Scholar
Zaman, K. B. M. Q. & Hussain, A. K. M. F. 1980 Vortex pairing in a circular jet under controlled excitation. Part 1. General jet response. J. Fluid Mech. 101, 449491.CrossRefGoogle Scholar