Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T16:44:24.277Z Has data issue: false hasContentIssue false

Nonlinear dynamics and synthetic-jet-based control of a canonical separated flow

Published online by Cambridge University Press:  11 May 2010

RUPESH B. KOTAPATI
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
RAJAT MITTAL*
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
OLAF MARXEN
Affiliation:
Centre for Turbulence Research, Stanford University, Stanford, CA 94305, USA
FRANK HAM
Affiliation:
Centre for Turbulence Research, Stanford University, Stanford, CA 94305, USA
DONGHYUN YOU
Affiliation:
Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
LOUIS N. CATTAFESTA III
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
*
Present address: Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA. Email address for correspondence: [email protected]

Abstract

A novel flow configuration devised for investigation of active control of separated airfoil flows using synthetic jets is presented. The configuration consists of a flat plate, with an elliptic leading edge and a blunt trailing edge, at zero incidence in a free stream. Flow separation is induced on the upper surface of the airfoil at the aft-chord location by applying suction and blowing on the top boundary of the computational domain. Typical separated airfoil flows are generally characterized by at least three distinct frequency scales corresponding to the shear layer instability, the unsteadiness of the separated region and the vortex shedding in the wake, and all these features are present in the current flow. Two-dimensional Navier–Stokes simulations of this flow at a chord Reynolds number of 6 × 104 have been carried out to examine the nonlinear dynamics in this flow and its implications for synthetic-jet-based separation control. The results show that there is a strong nonlinear coupling between the various features of the flow, and that the uncontrolled as well as the forced flow is characterized by a variety of ‘lock-on’ states that result from this nonlinear coupling. The most effective separation control is found to occur at the highest forcing frequency for which both the shear layer and the separated region lock on to the forcing frequency. The effects of the Reynolds number on the scaling of the characteristic frequencies of the separated flow and its subsequent control are studied by repeating some of the simulations at a higher Reynolds number of 1 × 105.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Exa Corporation, 55 Network Drive, Burlington, MA 01803, USA.

References

REFERENCES

Amitay, M., Honohan, A., Trautman, M. & Glezer, A. 1997 Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators. Paper 97-2004. AIAA.CrossRefGoogle Scholar
Auld, R. & Mittal, R. 1999 Numerical simulation of flow past a wall-mounted flap. In Bulletin of the American Physical Society, Division of Fluid Dynamics Meeting 21–23 November 1999, New Orleans, LA. APS.Google Scholar
Bar-Sever, A. 1989 Separation control on an airfoil by periodic forcing. AIAA J. 27, 820821.CrossRefGoogle Scholar
Bragg, M. B., Hienrich, D. C., Ballow, F. A. & Zaman, K. B. M. Q. 1996 Flow oscillation over an airfoil near stall. AIAA J. 34, 199201.CrossRefGoogle Scholar
Bragg, M. B., Hienrich, D. C. & Khodadoust, A. 1993 Low frequency flow oscillation over airfoils near stall. AIAA J. 31, 13411343.CrossRefGoogle Scholar
Broeren, A. P. & Bragg, M. B. 1998 Low frequency flow field unsteadiness during airfoil stall and influence of stall type. Paper 98-2517. AIAA.CrossRefGoogle Scholar
Chang, P. K. 1976 Control of Separation. McGraw-Hill.Google Scholar
Chatlynne, E., Rumigny, N., Amitay, M. & Glezer, A. 2001 Virtual aero-shapping of a clark-y airfoil using synthetic jet actuators. Paper 2001-0732. AIAA.CrossRefGoogle Scholar
Chen, F. J. & Beeler, G. B. 2002 Virtual shaping of a two-dimensional naca 0015 airfoil using synthetic jet actuator. Paper 2002-3273. AIAA.CrossRefGoogle Scholar
Collins, F. G. 1979 Boundary-layer control on wings using sound and leading edge serrations. Paper 79-1875. AIAA.CrossRefGoogle Scholar
Darabi, A. & Wygnanski, I. 2002 On the transient process of flow reattachment by external excitation. Paper 2002-3163. AIAA.CrossRefGoogle Scholar
Delery, J. M. 1985 Shock wave/turbulent boundary layer interaction and its control. Prog. Aerosp. Sci. 22, 209280.CrossRefGoogle Scholar
Funk, R., Parekh, D., Crittenden, T. & Glezer, A. 2002 Transient separation control using pulse combustion actuation. Paper 2002-3166. AIAA.CrossRefGoogle Scholar
Gad-El-Hak, M. 2000 Flow Control: Passive, Active, and Reactive Flow Management, 1st edn. Cambridge University Press.CrossRefGoogle Scholar
Gad-El-Hak, M. & Bushnell, D. M. 1991 Separation control: review. J. Fluids Engng 113, 530.CrossRefGoogle Scholar
Gilarranz, J. L. & Rediniotis, O. K. 2001 Compact, high-power synthetic jet actuators for flow separation control. Paper 2001-0737. AIAA.CrossRefGoogle Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34, 503532.CrossRefGoogle Scholar
Glezer, A., Amitay, M. & Honohan, A. M. 2003 Aspects of low- and high-frequency aerodynamic flow control. Paper 2003-0503. AIAA.Google Scholar
Greenblatt, D. & Wygnanski, I. 1999 Parameters affecting dynamic stall control by oscillatory excitation. Paper 99-3121. AIAA.CrossRefGoogle Scholar
Greenblatt, D. & Wygnanski, I. 2003 Effect of leading-edge curvature on airfoil separation control. J. Aircr. 40, 473481.CrossRefGoogle Scholar
Ham, F. & Iaccarino, G. 2004 Energy conservation in collocated discretization schemes on unstructured meshes. Tech. Rep. Annual Research Briefs 2004. Centre for Turbulence Research, Stanford University.Google Scholar
Ham, F., Mattson, K. & Iaccarino, G. 2006 Accurate and stable finite volume operators for unstructured flow solvers. Tech. Rep. Annual Research Briefs 2006. Centre for Turbulence Research, Stanford University.Google Scholar
He, Y. Y., Cary, A. W. & Peters, D. A. 2001 Parametric and dynamic modelling for synthetic jet control of a post-stall airfoil. Paper 2001-0733. AIAA.CrossRefGoogle Scholar
Ho, C. M. & Huang, L. S. 1982 Subharmonics and vorted merging in mixing layers. J. Fluid Mech. 119, 443473.CrossRefGoogle Scholar
Ho, C. M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
Johnson, W. S., Tennant, J. S. & Stamps, R. E 1975 Leading-edge rotating cylinder for boundary layer control on lifting surfaces. J. Hydronaut. 9, 7678.CrossRefGoogle Scholar
Kaltenbach, H.-J., Fatica, M., Mittal, R., Lund, T. S. & Moin, P. 1999 Study of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mech. 390, 151186.CrossRefGoogle Scholar
Karypis, G., Schlogel, K. & Kumar, V. 2003 ParMETIS: parallel graph partitionaing and sparse matrix ordering library – Version 3.1. Tech. Rep. Department of Computer Science and Engineering, University of Minnesota, Minnesota, MN.Google Scholar
Katz, Y., Horev, E. & Wygnanski, I. 1992 The forced turbulent wall jet. J. Fluid Mech. 242, 577610.CrossRefGoogle Scholar
Kotapati, R. B. 2008 On synthetic jets and their application to separation control in canonical airfoil flows. PhD thesis, The George Washington University, Washington, DC.Google Scholar
Kotapati, R. B., Mittal, R. & Ham, F. 2008 Large-eddy simulations of zero-net-mass-flux jet based separation control in a canonical separated flow. Paper 2008-4085. AIAA.CrossRefGoogle Scholar
Kotapati, R. B., Mittal, R., Marxen, O., Ham, F. & You, D. 2007 Numerical simulations of synthetic jet based separation control in a canonical separated flow. Paper 2007-1308. AIAA.CrossRefGoogle Scholar
Kourta, A., Boisson, H. C., Chassaing, P. & Minh, H. H. 1987 Nonlinear interaction and transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 181, 141161.CrossRefGoogle Scholar
Maestrello, L., Badavi, F. F. & Noonan, K. W. 1988 Control of boundary layer separation about an airfoil by active surface heating. Paper 88-3545. AIAA.CrossRefGoogle Scholar
Margalit, S., Greenblatt, D., Seifert, A. & Wygnanski, I. 2002 Active flow control of delta wing at high incidence using segmented piezoelectric actuators. Paper 2002-3270. AIAA.CrossRefGoogle Scholar
McCullough, G. B. & Gault, D. E. 1951 Examples of three representative types of airfoil-section stall at low speed. Tech. Rep. TN 2502. NACA.Google Scholar
Miranda, S., Telionis, D. & Zeiger, M. 2001 Flow control of a sharp edged airfoil. Paper 2001-0119. AIAA.CrossRefGoogle Scholar
Mittal, R., Venkatasubramanian, S. & Najjar, F. 2001 Large-eddy simulation of flow through a low-pressure turbine cascade. Paper 2001-2560. AIAA.CrossRefGoogle Scholar
Na, Y. & Moin, P. 1998 Direct numerical simulation of a separated turbulent boundary layer. J. Fluid Mech. 370, 175201.Google Scholar
Najjar, F. M. & Vanka, S. P. 1993 Numerical study of separated-reattaching flow. Theoret. Comput. Fluid Dyn. 5, 291308.CrossRefGoogle Scholar
Neuburger, D. & Wygnanski, I. 1987 The use of vibrating ribbon to delay separation on two-dimensional airfoils. In Proceedings of Air Force Academy Workshop on Unsteady Separated Flow (ed. Walker, J. M. & Seiler, F. J.). Colorado Springs, CO. Tech. Rep. 88-0004.Google Scholar
Nishri, B. 1995 On the dominant mechanisms governing active control of separation. PhD thesis, Department of Fluid Mechanics and Heat Transfer, Tel-Aviv University, Tel-Aviv, Israel.Google Scholar
Pack, L. G., Schaeffler, N., Yao, C. & Seifert, A. 2002 Active control of flow separation from the slat shoulder of a supercritical airfoil. Paper 2002-3156. AIAA.CrossRefGoogle Scholar
Pack, L. G. & Seifert, A. 2000 Dynamics of active separation control at high Reynolds numbers. Paper 2000-0409. AIAA.CrossRefGoogle Scholar
Postl, D., Gross, A. & Fasel, H. F. 2004 Numerical investigation of active flow control for low-pressure turbine blade separation. Paper 2004-0750. AIAA.CrossRefGoogle Scholar
Prandtl, L. 1904 Über flüssigkeitsbewegung bei sehr kleiner reibung. In Proceedings of Third International Congress of Mathematics, Heidelberg, Germany, pp. 4844918.Google Scholar
Prandtl, L. 1925 Magnuseffeckt und windkraftschiff. Naturwissenschaften 13, 93108.CrossRefGoogle Scholar
Prandtl, L. 1935 The mechanics of viscous fluids. In Aerodynamic Theory (ed. Durand, W. F.), pp. 34208. Springer.CrossRefGoogle Scholar
Prasad, A. & Williamson, C. H. K. 1996 The instability of the separated shear layer from a bluff body. Phys. Fluids 8, 13471349.CrossRefGoogle Scholar
Ravindran, S. S. 1999 Active control of flow separation over an airfoil. Tech. Rep. TM 209838. NACA.Google Scholar
Rizzetta, D. P. & Visbal, M. R. 2004 Numerical simulation of separation control for a transitional highly-loaded low-pressure turbine. Paper 2004-2204. AIAA.CrossRefGoogle Scholar
Roshko, A. 1954 On the development of turbulent wakes from vortex sheets. Tech. Rep. No. 1191. NACA.Google Scholar
Schaeffler, N. W., Jenkins, L. N. & Hepner, T. E. 2004 Case 2: experimental evaluation of an isolated synthetic jet in crossflow. In Proceedings of NASA LaRC Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control, March 29–31, Williamsburg, VA.Google Scholar
Seifert, A., Bachar, T., Koss, D., Shepshelovich, M. & Wygnanski, I. 1993 Oscillatory blowing: a tool to delay boundary layer separation. AIAA J. 31, 20522060.CrossRefGoogle Scholar
Seifert, A., Darabi, A. & Wygnanski, I. 1996 Delay of airfoil stall by periodic excitation. J. Aircr. 33, 691699.CrossRefGoogle Scholar
Seifert, A., Eliahu, S. & Greenblatt, D. 1998 Use of piezoelectric actuators for airfoil separation control. AIAA J. 36, 15351537.CrossRefGoogle Scholar
Seifert, A. & Pack, L. 1999 Oscillatory control of separation at high Reynolds numbers. AIAA J. 37, 10621071.CrossRefGoogle Scholar
Seifert, A. & Pack, L. 2000 Separation control at flight Reynolds numbers – lessons learned and future directions. Paper 2000-2542. AIAA.CrossRefGoogle Scholar
Shepshelovich, M., Koss, D., Wygnanski, I. & Seifert, A. 1989 Active flow control on low re airfoils. Paper 89-0538. AIAA.CrossRefGoogle Scholar
Sigurdson, L. W. & Roshko, A. 1985 Controlled unsteady excitation of a reattaching flow. Paper 85-0552. AIAA.Google Scholar
Sohn, K. H., Shyne, R. J. & DeWitt, K. J. 1998 Experimental investigation of boundary layer behaviour in a simulated low pressure turbine. Paper 98-GT-34. ASME.CrossRefGoogle Scholar
Tian, Y., Cattafesta, L. & Mittal, R. 2006 Adaptive control of separated flow. Paper 2006-1401. AIAA.CrossRefGoogle Scholar
Williamson, C. H. K., Wu, J. & Sheridan, J. 1995 Scaling of streamwise vortices in wakes. Phys. Fluids 7, 23072309.CrossRefGoogle Scholar
Wu, J. Z., Lu, X. Y., Denny, A. G., Fan, M. & Wu, J. M. 1998 Post-stall flow control on an airfoil by local unsteady forcing. J. Fluid Mech. 371, 2158.CrossRefGoogle Scholar
Wu, J., Sheridan, J., Hourigan, K. & Soria, J. 1996 Shear layer vortices and longitudinal vortices in the near wake of a circular cylinder. Exp. Therm. Fluid Sci. 12, 169174.CrossRefGoogle Scholar
Wygnanski, I. 1997 Boundary layer and flow control by periodic addition of momentum. Paper 97-2117. AIAA.CrossRefGoogle Scholar
Wygnanski, I. 2000 Some new observations affecting the control of separation by periodic forcing. Paper 2000-2314. AIAA.CrossRefGoogle Scholar
Zaman, K. B. M. Q., McKenzie, B. J. & Rumsey, C. L. 1989 A natural low frequency oscillation over airfoils near stalling conditions. J. Fluid Mech. 202, 403442.CrossRefGoogle Scholar
Zhou, M. D. & Wygnanski, I. 1993 Parameters governing the turbulent wall jet in an external stream. AIAA J. 31, 848853.CrossRefGoogle Scholar