Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T13:48:13.829Z Has data issue: false hasContentIssue false

Nonlinear convection in a rotating fluid

Published online by Cambridge University Press:  29 March 2006

C. Hunter
Affiliation:
The Florida State University, Tallahassee, Florida
N. Riahi
Affiliation:
The Florida State University, Tallahassee, Florida

Abstract

The paper studies convection in a horizontal layer of fluid rotating about a vertical axis. The flows at large Rayleigh number R, with a single horizontal wave-number, are investigated using the mean-field approximation of Herring (1963). The flow that maximizes the heat flux is the same as that which gives an upper bound to the heat flux in the limit of infinite Prandtl number as calculated by the methods of Howard (1963) and Chan (1971, 1974).

Rotation is not significant until the Taylor number Ta exceeds O(R). For $O(R) \ll Ta \ll O[(R\log R)^{\frac{4}{3}}]$, it can increase the rate of heat transfer, a phenomenon noted experimentally by Rossby (1969). It does so because an Ekman layer is formed outside the thermal boundary layer, causing a thinning of the thermal layer. The maximum value of the Nusselt number N is approximately $0.177R^{\frac{1}{5}} Ta^{\frac{1}{10}}[\log Ta]^{\frac{1}{5}}$. As the Taylor number increases further into the region $O[(R\log R)^{\frac{4}{3}}] \ll Ta \ll O(R^{\frac{3}{2}})$, the maximum value of N drops sharply, and becomes approximately $0.029 R^{\frac{3}{2}} Ta^{-1} \log(R^{\frac{3}{2}}/Ta)$. Hence, N now decreases with a further increase of Ta and eventually becomes O(1) as $Ta\rightarrow O(R^{\frac{3}{2}})$ and the layer becomes stable.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Busse, F. H. 1969 J. Fluid Mech. 37, 457.
Busse, F. H. & Joseph, D. D. 1972 J. Fluid Mech. 54, 521.
Chan, S. K. 1971 Studies in Appl. Math. 50, 13.
Chan, S. K. 1974 J. Fluid Mech. 64, 477.
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.
Elder, J. W. 1969 J. Fluid Mech. 35, 417.
Glansdorff, P. & Prigogine, I. 1964 Physica, 30, 351.
Gough, D. O., Spiegel, E. A. & Toomre, J. 1975 J. Fluid Mech. 68, 695.
Gupta, V. P. & Joseph, D. D. 1973 J. Fluid Mech. 57, 491.
Herring, J. R. 1963 J. Atmos. Sci. 20, 325.
Howard, L. N. 1963 J. Fluid Mech. 17, 405.
Malkus, W. V. R. 1954 Proc. Roy. Soc. A 225, 196.
Morgan, J. C. 1973 J. Fluid Mech. 57, 433.
Niiler, P. P. & Bisshopp, F. E. 1965 J. Fluid Mech. 22, 753.
Roberts, P. H. 1966 In Non-equilibrium Thermodynamics: Variational Techniques and Stability (ed. R. J. Donnelley, R. Herman and I. Prigogine). University of Chicago Press.
Rossby, H. T. 1969 J. Fluid Mech. 36, 309.
Somerville, R. C. J. 1971 Geophys. Fluid Dyn. 2, 247.
Somerville, R. C. J. & Lipps F. B. 1973 J. Atmos. Sci. 30, 590.
Van Der Borght, R. & Murphy, J. O. 1973 Aust. J. Phys. 26, 341.
Veronis, G. 1968 J. Fluid. Mech 31, 113.