Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T21:40:32.447Z Has data issue: false hasContentIssue false

Non-dimensional energy dissipation rate near the turbulent/non-turbulent interfacial layer in free shear flows and shear free turbulence

Published online by Cambridge University Press:  18 July 2019

Tomoaki Watanabe*
Affiliation:
Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
Carlos B. da Silva
Affiliation:
Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
Koji Nagata
Affiliation:
Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
*
Email address for correspondence: [email protected]

Abstract

The non-dimensional dissipation rate $C_{\unicode[STIX]{x1D700}}=\unicode[STIX]{x1D700}L/u^{\prime 3}$, where $\unicode[STIX]{x1D700}$, $L$ and $u^{\prime }$ are the viscous energy dissipation rate, integral length scale of turbulence and root-mean-square of the velocity fluctuations, respectively, is computed and analysed within the turbulent/non-turbulent interfacial (TNTI) layer using direct numerical simulations of a planar jet, mixing layer and shear free turbulence. The TNTI layer that separates the turbulent and non-turbulent regions exists at the edge of free shear turbulent flows and turbulent boundary layers, and comprises both the viscous superlayer and turbulent sublayer regions. The computation of $C_{\unicode[STIX]{x1D700}}$ is made possible by the introduction of an original procedure, based on local volume averages within spheres of radius $r$, combined with conditional sampling as a function of the location with respect to the TNTI layer. The new procedure allows for a detailed investigation of the scale dependence of several turbulent quantities near the TNTI layer. An important achievement of this procedure consists in permitting the computation of the turbulent integral scale within the TNTI layer, which is shown to be approximately constant. Both the non-dimensional dissipation rate and turbulent Reynolds number $Re_{\unicode[STIX]{x1D706}}$ vary in space within the TNTI layer, where two relations are observed: $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-1}$ and $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-2}$. Specifically, whereas the viscous superlayer and part of the turbulent sublayer display $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-2}$, the remaining of the turbulent sublayer exhibits $C_{\unicode[STIX]{x1D700}}\sim Re_{\unicode[STIX]{x1D706}}^{-1}$, which is consistent with non-equilibrium turbulence (Vassilicos, Annu. Rev. Fluid Mech. vol. 47, 2015, pp. 95–114).

JFM classification

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alvelius, K. 1999 Random forcing of three-dimensional homogeneous turbulence. Phys. Fluids 11 (7), 18801889.Google Scholar
Antonia, R. A., Satyaprakash, B. R. & Hussain, A. K. M. F. 1980 Measurements of dissipation rate and some other characteristics of turbulent plane and circular jets. Phys. Fluids 23 (4), 695700.Google Scholar
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.Google Scholar
Borrell, G. & Jiménez, J. 2008 Properties of the turbulent/non-turbulent interface in boundary layers. J. Fluid Mech. 801, 554596.Google Scholar
Bos, W. J. T. & Rubinstein, R. 2017 Dissipation in unsteady turbulence. Phys. Rev. Fluids 2 (2), 022601.10.1103/PhysRevFluids.2.022601Google Scholar
Cleary, M. J. & Klimenko, A. Y. 2009 A generalised multiple mapping conditioning approach for turbulent combustion. Flow Turbul. Combust. 82 (4), 477491.Google Scholar
Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. No. TN-1244.Google Scholar
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Deo, R. C., Mi, J. & Nathan, G. J. 2008 The influence of Reynolds number on a plane jet. Phys. Fluids 20 (7), 075108.Google Scholar
Deo, R. C., Nathan, G. J. & Mi, J. 2013 Similarity analysis of the momentum field of a subsonic, plane air jet with varying jet-exit and local Reynolds numbers. Phys. Fluids 25 (1), 015115.Google Scholar
Fox, R. O. 2003 Computational Models for Turbulent Reacting Flows. Cambridge University Press.Google Scholar
Gampert, M., Boschung, J., Hennig, F., Gauding, M. & Peters, N. 2014a The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J. Fluid Mech. 750, 578596.Google Scholar
Gampert, M., Kleinheinz, K., Peters, N. & Pitsch, H. 2014b Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow. Flow Turbul. Combust. 92 (1–2), 429449.Google Scholar
Goto, S. & Vassilicos, J. C. 2016 Unsteady turbulence cascades. Phys. Rev. E 94 (5), 053108.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.Google Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 134503.Google Scholar
Jahanbakhshi, R. & Madnia, C. K. 2016 Entrainment in a compressible turbulent shear layer. J. Fluid Mech. 797, 564603.10.1017/jfm.2016.296Google Scholar
Jahanbakhshi, R. & Madnia, C. K. 2018 Viscous superlayer in a reacting compressible turbulent mixing layer. J. Fluid Mech. 848, 743755.Google Scholar
Jahanbakhshi, R., Vaghefi, N. S. & Madnia, C. K. 2015 Baroclinic vorticity generation near the turbulent/non-turbulent interface in a compressible shear layer. Phys. Fluids 27 (10), 105105.Google Scholar
Kempf, A., Klein, M. & Janicka, J. 2005 Efficient generation of initial-and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74 (1), 6784.Google Scholar
Kolmogorov, A. N. 1941 On degeneration (decay) of isotropic turbulence in an incompressible viscous liquid. Dokl. Akad. Nauk SSSR 31, 538540.Google Scholar
Layek, G. C. & Sunita 2018 Non-Kolmogorov dissipation in a turbulent planar jet. Phys. Rev. Fluids 3 (12), 124605.10.1103/PhysRevFluids.3.124605Google Scholar
Mathew, J., Ghosh, S. & Friedrich, R. 2016 Changes to invariants of the velocity gradient tensor at the turbulent–nonturbulent interface of compressible mixing layers. Intl J. Heat Fluid Flow 59, 125130.Google Scholar
Mitarai, S., Riley, J. J. & Kosaly, G. 2005 Testing of mixing models for Monte Carlo probability density function simulations. Phys. Fluids 17 (4), 047101.Google Scholar
Nagata, R., Watanabe, T. & Nagata, K. 2018 Turbulent/non-turbulent interfaces in temporally evolving compressible planar jets. Phys. Fluids 30 (10), 105109.Google Scholar
Nedić, J., Vassilicos, J. C. & Ganapathisubramani, B. 2013 Axisymmetric turbulent wakes with new nonequilibrium similarity scalings. Phys. Rev. Lett. 111 (14), 144503.Google Scholar
Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.Google Scholar
Pumir, A., Shraiman, B. I. & Chertkov, M. 2001 The Lagrangian view of energy transfer in turbulent flow. Europhys. Lett. 56 (3), 379385.Google Scholar
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.10.1017/jfm.2013.613Google Scholar
Richardson, L. F. 1922 Weather Prediction by Numerical Process. Cambridge University Press.Google Scholar
Seoud, R. E. & Vassilicos, J. C. 2007 Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19 (10), 105108.Google Scholar
da Silva, C. B. 2009 The behavior of subgrid-scale models near the turbulent/nonturbulent interface in jets. Phys. Fluids 21 (8), 081702.Google Scholar
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.Google Scholar
da Silva, C. B. & Pereira, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.10.1063/1.2912513Google Scholar
Silva, T. S., Zecchetto, M. & da Silva, C. B. 2018 The scaling of the turbulent/non-turbulent interface at high Reynolds numbers. J. Fluid Mech. 843, 156179.10.1017/jfm.2018.143Google Scholar
Sreenivasan, K. R. 1984 On the scaling of the turbulence energy dissipation rate. Phys. Fluids 27 (5), 10481051.Google Scholar
Takamure, K., Sakai, Y., Ito, Y., Iwano, K. & Hayase, T. 2019 Dissipation scaling in the transition region of turbulent mixing layer. Intl J. Heat Fluid Flow 75, 7785.Google Scholar
Taveira, R. R., Diogo, J. S., Lopes, D. C. & da Silva, C. B. 2013 Lagrangian statistics across the turbulent-nonturbulent interface in a turbulent plane jet. Phys. Rev. E 88 (4), 043001.Google Scholar
Taveira, R. R. & da Silva, C. B. 2013 Kinetic energy budgets near the turbulent/nonturbulent interface in jets. Phys. Fluids 25, 015114.Google Scholar
Taveira, R. R. & da Silva, C. B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.Google Scholar
Teixeira, M. A. C. & da Silva, C. B. 2012 Turbulence dynamics near a turbulent/non-turbulent interface. J. Fluid Mech. 695, 257287.Google Scholar
Terashima, O., Sakai, Y., Nagata, K., Ito, Y., Onishi, K. & Shouji, Y. 2016 Simultaneous measurement of velocity and pressure near the turbulent/non-turbulent interface of a planar turbulent jet. Exp. Therm. Fluid Sci. 75, 137146.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Vaghefi, N. S. & Madnia, C. K. 2015 Local flow topology and velocity gradient invariants in compressible turbulent mixing layer. J. Fluid Mech. 774, 6794.Google Scholar
Valente, P. C., Onishi, R. & da Silva, C. B. 2014 Origin of the imbalance between energy cascade and dissipation in turbulence. Phys. Rev. E 90 (2), 023003.Google Scholar
Valente, P. C. & Vassilicos, J. C. 2012 Universal dissipation scaling for nonequilibrium turbulence. Phys. Rev. Lett. 108 (21), 214503.Google Scholar
Vassilicos, J. C. 2015 Dissipation in turbulent flows. Annu. Rev. Fluid Mech. 47, 95114.Google Scholar
Watanabe, T., Jaulino, R., Taveira, R. R., da Silva, C. B., Nagata, K. & Sakai, Y. 2017a Role of an isolated eddy near the turbulent/non-turbulent interface layer. Phys. Rev. Fluids 2 (9), 094607.Google Scholar
Watanabe, T. & Nagata, K. 2016 Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing. Phys. Fluids 28 (8), 085103.Google Scholar
Watanabe, T. & Nagata, K. 2017a Gradients estimation from random points with volumetric tensor in turbulence. J. Comput. Phys. 350, 518529.10.1016/j.jcp.2017.08.057Google Scholar
Watanabe, T., Nagata, K. & da Silva, C. B. 2017b Vorticity evolution near the turbulent/non-turbulent interfaces in free-shear flows. In Vortex Structures in Fluid Dynamic Problems, InTech.Google Scholar
Watanabe, T., Riley, J. J., Nagata, K., Onishi, R. & Matsuda, K. 2018a A localized turbulent mixing layer in a uniformly stratified environment. J. Fluid Mech. 849, 245276.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2014 Vortex stretching and compression near the turbulent/nonturbulent interface in a planar jet. J. Fluid Mech. 758, 754785.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2015 Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys. Fluids 27 (8), 085109.10.1063/1.4928199Google Scholar
Watanabe, T., da Silva, C. B. & Nagata, K. 2016a Multi-particle dispersion during entrainment in turbulent free-shear flows. J. Fluid Mech. 805, R1.Google Scholar
Watanabe, T., da Silva, C. B., Nagata, K. & Sakai, Y. 2017c Geometrical aspects of turbulent/non-turbulent interfaces with and without mean shear. Phys. Fluids 29 (8), 085105.Google Scholar
Watanabe, T., da Silva, C. B., Sakai, Y., Nagata, K. & Hayase, T. 2016b Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers. Phys. Fluids 28 (3), 031701.Google Scholar
Watanabe, T., Zhang, X. & Nagata, K. 2018b Turbulent/non-turbulent interfaces detected in DNS of incompressible turbulent boundary layers. Phys. Fluids 30 (3), 035102.10.1063/1.5022423Google Scholar
Wolf, M., Holzner, M., Lüthi, B., Krug, D., Kinzelbach, W. & Tsinober, A. 2013 Effects of mean shear on the local turbulent entrainment process. J. Fluid Mech. 731, 95116.Google Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.Google Scholar
Zhang, X., Watanabe, T. & Nagata, K. 2018 Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers. Phys. Rev. Fluids 3 (9), 094605.Google Scholar