Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T21:48:02.076Z Has data issue: false hasContentIssue false

New instability mode in a grooved channel

Published online by Cambridge University Press:  10 August 2015

A. Mohammadi*
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
H. V. Moradi
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
J. M. Floryan
Affiliation:
Department of Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, N6A 5B9, Canada
*
Email address for correspondence: [email protected]

Abstract

It is known that longitudinal grooves may stabilize or destabilize the travelling wave instability in a channel flow depending on the groove wavenumber. These waves reduce to the classical Tollmien–Schlichting waves in the absence of grooves. It is shown that another class of travelling wave instability exists if grooves with sufficiently high amplitude and proper wavelengths are used. It is demonstrated that the new instability mode is driven by the inviscid mechanism, with the disturbance motion having the form of a wave propagating in the streamwise direction with phase speed approximately four times larger than the Tollmien–Schlichting wave speed and with its streamwise wavelength being approximately twice the spanwise groove wavelength. The instability motion is concentrated mostly in the middle of the channel and has a planar character, i.e. the dominant velocity components are parallel to the walls. A significant reduction of the corresponding critical Reynolds number can be achieved by increasing the groove amplitude. Conditions that guarantee the flow stability in a grooved channel, i.e. the grooved surface behaves as a hydraulically smooth surface, have been identified.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnal, D., Perraud, J. & Séraudie, A.2008 Attachment line and surface imperfection problems. In Advances in Laminar–Turbulent Transition Modeling, RTO-EN-AVT-151-09, 1-20, Brussels, Belgium.Google Scholar
Asai, M. & Floryan, J. M. 2006 Experiments on the linear instability of flow in a wavy channel. Eur. J. Mech. (B/Fluids) 25, 971986.Google Scholar
Bloch, F. 1929 Über die Quantenmechanik der Elektronen in Kristallgittern. Z. Phys. 52, 555600.Google Scholar
Boiko, A. V., Jung, K. H., Chun, H. H. & Lee, I. 2007 Effect of riblets on the streaky structures excited by free stream tip vortices in boundary layer. J. Mech. Sci. Engng 21, 196206.Google Scholar
Boiko, A. V., Kozlov, V. V., Syzrantsev, V. V. & Scherbakov, V. A. 1997 Transition control by riblets in swept wing boundary layer with embedded streamwise vortex. Eur. J. Mech. (B/Fluids) 16, 465482.Google Scholar
Boiko, A. V. & Nechepurenko, Yu. M. 2010 Technique for the numerical analysis of the riblet effect on temporal stability of plane flows. Comput. Maths Maths Phys. 50, 10551070.Google Scholar
Cabal, A., Szumbarski, J. & Floryan, J. M. 2001 Numerical simulation of flows over corrugated walls. Comput. Fluids 30, 753776.Google Scholar
Cabal, A., Szumbarski, J. & Floryan, J. M. 2002 Stability of flow in a wavy channel. J. Fluid Mech. 457, 191212.Google Scholar
Canuto, C., Hussaini, M. Y., Quarteroni, A. & Zang, T. A. 2006 Spectral Methods: Fundamentals in Single Domains. Springer.Google Scholar
Coddington, E. A. & Levinson, N. 1965 Theory of Ordinary Differential Equations. McGraw-Hill.Google Scholar
Dean, B. & Bhushan, B. 2010 Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review. Phil. Trans. R. Soc. Lond. A 368, 47754806.Google Scholar
Denissen, N. A. & White, E. B. 2009 Continuous spectrum analysis of roughness-induced transient growth. Phys. Fluids 21, 114105.CrossRefGoogle Scholar
Ehrenstein, U. 1996 On the linear stability of channel flow over riblets. Phys. Fluids 8, 31943196.Google Scholar
Fjørtoft, R. 1950 Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex. Geofys. Publ. 17, 152.Google Scholar
Floryan, J. M. 1997 Stability of wall-bounded shear layers in the presence of simulated distributed surface roughness. J. Fluid Mech. 335, 2955.Google Scholar
Floryan, J. M. 2002 Centrifugal instability of Couette flow over a wavy wall. Phys. Fluids 14, 312322.CrossRefGoogle Scholar
Floryan, J. M. 2007 Three-dimensional instabilities of laminar flow in a rough channel and the concept of hydraulically smooth wall. Eur. J. Mech. (B/Fluids) 26, 305329.Google Scholar
Floryan, J. M. & Asai, M. 2011 On the transition between distributed and isolated surface roughness and its effect on the stability of channel flow. Phys. Fluids 23, 104101.Google Scholar
Grek, G. R., Kozlov, V. V. & Titarenko, S. V. 1996 An experimental study of the influence of riblets on transition. J. Fluid Mech. 315, 3149.Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Herwig, H., Gloss, D. & Wenterodt, T. 2008 A new approach to understanding and modelling the influence of wall roughness on friction factors for pipe and channel flows. J. Fluid Mech. 613, 3553.CrossRefGoogle Scholar
Hossain, M. Z. & Floryan, J. M. 2013 Instabilities of natural convection in a periodically heated layer. J. Fluid Mech. 733, 3367.CrossRefGoogle Scholar
Hossain, M. Z. & Floryan, J. M. 2015 Mixed convection in a periodically heated channel. J. Fluid Mech. 768, 5190.CrossRefGoogle Scholar
Husain, S. Z. & Floryan, J. M. 2010 Spectrally-accurate algorithm for moving boundary problems for the Navier–Stokes equations. J. Comput. Phys. 229, 22872313.Google Scholar
Inasawa, A., Floryan, J. M. & Asai, M. 2014 Flow recovery downstream from a surface protuberance. Theor. Comput. Fluid Dyn. 28, 427447.Google Scholar
Jin, Y. & Herwig, H. 2014 Turbulent flow and heat transfer in channels with shark skin surfaces: entropy generation and its physical significance. Intl J. Heat Mass Transfer 70, 1022.CrossRefGoogle Scholar
Klumpp, S., Meinke, M. & Schröder, W. 2010 Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85, 5771.Google Scholar
Luchini, P. & Trombetta, G. 1995 Effects of riblets upon flow stability. Appl. Sci. Res. 54, 313321.CrossRefGoogle Scholar
Mack, L. M. 1976 A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73, 497520.Google Scholar
Ma’mun, M. D. & Asai, M. 2014 Influences of oblique surface corrugation on boundary-layer instability. J. Phys. Soc. Japan 83, 084402.Google Scholar
Ma’mun, M. D., Asai, M. & Inasawa, A. 2014 Effects of surface corrugation on the stability of a zero-pressure-gradient boundary layer. J. Fluid Mech. 741, 228251.Google Scholar
Manor, R., Hagberg, A. & Meron, E. 2008 Wave-number locking in spatially forced pattern-forming systems. Europhys. Lett. 83, 10005.Google Scholar
Manor, R., Hagberg, A. & Meron, E. 2009 Wave number locking and pattern formation in spatially forced systems. New J. Phys. 11, 063016.CrossRefGoogle Scholar
Mohammadi, A. & Floryan, J. M. 2010 Pressures losses in grooved channels. Bull. Amer. Phys. Soc. 55 (16), 300, 63rd Annual Meeting of the American Physical Society Division of Fluid Dynamics, Long Beach, California, USA.Google Scholar
Mohammadi, A. & Floryan, J. M. 2012 Spectral algorithm for the analysis of flows in grooved channels. Intl J. Numer. Meth. Fluids 69, 606638.Google Scholar
Mohammadi, A. & Floryan, J. M. 2013a Pressure losses in grooved channels. J. Fluid Mech. 725, 2354.Google Scholar
Mohammadi, A. & Floryan, J. M. 2013b Groove optimization for drag reduction. Phys. Fluids 25, 113601.Google Scholar
Moody, L. F. 1944 Friction factors for pipe flow. Trans. ASME 66, 671684.Google Scholar
Moradi, H. V. & Floryan, J. M. 2014 Stability of flow in a channel with longitudinal grooves. J. Fluid Mech. 757, 613648.CrossRefGoogle Scholar
Morkovin, M. V. 1990 On roughness-induced transition: facts, views and speculations. In Instability and Transition (ed. Hussaini, M. Y. & Voigt, R. G.), ICASE/NASA LARC Series, vol. 1, pp. 281295. Springer.Google Scholar
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50, 689703.Google Scholar
Rothenflue, J. A. & King, P. I. 1995 Vortex development over flat plate riblets in a transitioning boundary layer. AIAA J. 33, 15251526.CrossRefGoogle Scholar
Saad, Y. 2003 Iterative Methods for Sparse Linear Systems. SIAM.Google Scholar
Schlichting, H. 1979 Boundary Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Szumbarski, J. 2002 Immersed boundary approach to stability equations for a spatially periodic viscous flow. Arch. Mech. 54, 199222.Google Scholar
Szumbarski, J. 2007 Instability of viscous incompressible flow in a channel with transversely corrugated walls. J. Theor. Appl. Mech. 45, 659683.Google Scholar
Szumbarski, J., Blonski, S. & Kowalewski, T. A. 2011 Impact of transversely-oriented wall corrugation on hydraulic resistance of a channel flow. Arch. Mech. Engng 58, 441466.Google Scholar
Szumbarski, J. & Floryan, J. M. 1999 A direct spectral method for determination of flows over corrugated boundaries. J. Comput. Phys. 153, 378402.Google Scholar
Szumbarski, J. & Floryan, J. M. 2006 Transient disturbance growth in a corrugated channel. J. Fluid Mech. 568, 243272.Google Scholar
Walsh, M. J. 1983 Riblets as a viscous drag reduction technique. AIAA J. 21, 485486.Google Scholar
White, E. B., Rice, J. M. & Ergin, F. G. 2005 Receptivity of stationary transient disturbances to surface roughness. Phys. Fluids 17, 064109.CrossRefGoogle Scholar