Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T17:24:07.617Z Has data issue: false hasContentIssue false

A new formulation of a spray dispersion model for particle/droplet-laden flows subjected to shock waves

Published online by Cambridge University Press:  28 October 2020

G. Gai
Affiliation:
DES-DM2S-STMF, CEA, Université Paris-Saclay, Paris, France CORIA, UMR-6614, CNRS, INSA, University of Normandy, 76000Rouen, France
O. Thomine
Affiliation:
DES-DM2S-STMF, CEA, Université Paris-Saclay, Paris, France
S. Kudriakov
Affiliation:
DES-DM2S-STMF, CEA, Université Paris-Saclay, Paris, France
A. Hadjadj*
Affiliation:
CORIA, UMR-6614, CNRS, INSA, University of Normandy, 76000Rouen, France
*
Email address for correspondence: [email protected]

Abstract

A new analytical model is derived based on physical concepts and conservation laws, in order to evaluate the post-shock gas velocity, the gas density and the spray dispersion topology during the interaction of a shock wave and a water spray in a one-dimensional configuration. The model is validated against numerical simulations over a wide range of incident Mach numbers $M_s$ and particle volume fractions $\tau _{v,0}$. Two regimes of shock reflection have been identified depending on $M_s$, where the reflected pressure expansion propagates either opposite to the incident shock-wave direction for weak incident Mach numbers or along with it for strong Mach numbers. The numerical simulations reveal the presence of a particle number-density peak for $M_s > 2$ and with particle diameters of the order of ${O}(10)\ \mathrm {\mu } \textrm {m}$. The formation of the number-density peak is discussed and a necessary condition for its existence is proposed for the first time.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balakrishnan, K. & Bellan, J. 2017 High-fidelity modeling and numerical simulation of cratering induced by the interaction of a supersonic jet with a granular bed of solid particles. Intl J. Multiphase Flow 99, 129.CrossRefGoogle Scholar
Britan, A., Shapiro, H., Liverts, M., Ben-Dor, G., Chinnayya, A. & Hadjadj, A. 2013 Macro-mechanical modeling of blast-wave mitigation in foams. Part I: review of available experiments and models. Shock Waves 23 (1), 523.CrossRefGoogle Scholar
Carrier, G. F. 1958 Shock waves in a dusty gas. J. Fluid Mech. 4 (4), 376382.CrossRefGoogle Scholar
Chang, E. J. & Kailasanath, K. 2003 Shock wave interactions with particles and liquid fuel droplets. Shock Waves 12 (4), 333341.CrossRefGoogle Scholar
Chaudhuri, A., Hadjadj, A., Sadot, O. & Ben-Dor, G. 2013 Numerical study of shock-wave mitigation through matrices of solid obstacles. Shock Waves 23, 91101.CrossRefGoogle Scholar
Chaudhuri, A., Hadjadj, A., Sadot, O. & Glazer, E. 2012 Computational study of shock-wave interaction with solid obstacles using immersed boundary methods. Intl J. Numer. Meth. Engng 89 (8), 975990.CrossRefGoogle Scholar
Dahal, J. & McFarland, J. A. 2017 A numerical method for shock driven multiphase flow with evaporating particles. J. Comput. Phys. 344, 210233.CrossRefGoogle Scholar
Del Prete, E., Chinnayya, A., Domergue, L., Hadjadj, A. & Haas, J.-F. 2013 Blast wave mitigation by dry aqueous foams. Shock Waves 23 (1), 3953.CrossRefGoogle Scholar
Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52 (4), 309329.CrossRefGoogle Scholar
Elghobashi, S. 2006 An updated classification map of particle-laden turbulent flows. In IUTAM Symposium on Computational Approaches to Multiphase Flow, vol. 81, pp. 310. Springer.CrossRefGoogle Scholar
Foissac, A., Malet, J., Vetrano, M. R., Buchlin, J. M., Mimouni, S., Feuillebois, F. & Simonin, O. 2011 Droplet size and velocity measurements at the outlet of a hollow cone spray nozzle. Atomiz. Sprays 21, 893905.CrossRefGoogle Scholar
Gai, G., Kudriakov, S., Hadjadj, A., Studer, E. & Thomine, O. 2019 Modeling pressure loads during a premixed hydrogen combustion in the presence of water spray. Intl J. Hydrogen Energ. 44 (10), 45924607.CrossRefGoogle Scholar
Gai, G., Thomine, O., Hadjadj, A. & Kudriakov, S. 2020 Modeling of particle cloud dispersion in compressible gas flows with shock waves. Phys. Fluids 32 (2), 023301.CrossRefGoogle Scholar
Gelfand, B. E. 1996 Droplet break-up phenomena in flows with velocity lag. Prog. Energy Combust. Sci. 22 (3), 201265.CrossRefGoogle Scholar
Geng, J. H., Van de Ven, A., Yu, Q., Zhang, F. & Grönig, H. 1994 Interaction of a shock wave with a two-phase interface. Shock Waves 3 (3), 193199.Google Scholar
Guildenbecher, D. R., Lopez-Rivera, C. & Sojka, P. E. 2009 Secondary atomization. Exp. Fluids 46, 371402.Google Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.Google Scholar
Jourdan, G., Biamino, L., Mariani, C., Blanchot, C., Daniel, E., Massoni, J., Houas, L., Tosello, R. & Praguine, D. 2010 Attenuation of a shock wave passing through a cloud of water droplets. Shock Waves 20 (4), 285296.CrossRefGoogle Scholar
Jourdan, G., Mariani, C., Houas, L., Chinnayya, A., Hadjadj, A., Del Prete, E., Haas, J.-F., Rambert, N., Counilh, D. & Faure, S. 2015 Analysis of shock-wave propagation in aqueous foams using shock tube experiments. Phys. Fluids 27 (5), 056101.CrossRefGoogle Scholar
Kersey, J., Loth, E. & Lankford, D. 2010 Effect of evaporating droplets on shock waves. AIAA J. 48 (9), 19751986.CrossRefGoogle Scholar
Landau, L. D. & Lifshits, E. M. 1959 Fluid Mechanics. Pergamon Press.Google Scholar
Ling, Y., Haselbacher, A. & Balachandar, S. 2011 Importance of unsteady contributions to force and heating for particles in compressible flows. Part 2: application to particle dispersal by blast waves. Intl J. Multiphase Flow 37 (9), 10131025.CrossRefGoogle Scholar
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.Google Scholar
Ling, Y., Wagner, L., Beresh, S. J., Kearney, S. P. & Balachandar, S. 2012 Interaction of a planar shock wave with a dense particle curtain: modeling and experiments. Phys. Fluids 24 (11), 113301.CrossRefGoogle Scholar
Mehta, Y., Jackson, T. L., Zhang, J. & Balachandar, S. 2016 Numerical investigation of shock interaction with one-dimensional transverse array of particles in air. J. Appl. Phys. 119 (10), 104901.CrossRefGoogle Scholar
Mouronval, A.-S., Tie, B., Hadjadj, A. & Moebs, G. 2019 Investigation of shock/elastic obstacles interactions by means of a coupling technique. J. Fluid Struct. 84, 345367.Google Scholar
Olim, M., Ben-Dor, G., Mond, M. & Igra, O. 1990 A general attenuation law of moderate planar shock waves propagating into dusty gases with relatively high loading ratios of solid particles. Fluid Dyn. Res. 6 (3), 185199.CrossRefGoogle Scholar
Pilch, M. & Erdman, C. A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Multiphase Flow 13 (6), 741757.CrossRefGoogle Scholar
Rudinger, G. 1964 Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7 (5), 658663.Google Scholar
Saito, T., Marumoto, M. & Takayama, K. 2003 Numerical investigations of shock waves in gas–particle mixtures. Shock Waves 13, 299322.CrossRefGoogle Scholar
Sugiyama, Y., Ando, H., Shimura, K. & Matsuo, A. 2019 Numerical investigation of the interaction between a shock wave and a particle cloud curtain using a CFD–DEM model. Shock Waves 29 (4), 499510.Google Scholar
Theofanous, T. G. & Chang, C.-H. 2017 The dynamics of dense particle clouds subjected to shock waves. Part 2. Modeling/numerical issues and the way forward. Intl J. Multiphase Flow 89, 177206.CrossRefGoogle Scholar
Theofanous, T. G., Mitkin, V. & Chang, C.-H. 2016 The dynamics of dense particle clouds subjected to shock waves. Part 1. Experiments and scaling laws. J. Fluid Mech. 792, 658681.CrossRefGoogle Scholar
Theofanous, T. G., Mitkin, V. & Chang, C.-H. 2018 Shock dispersal of dilute particle clouds. J. Fluid Mech. 841, 732745.CrossRefGoogle Scholar
Thomas, G. O. 2000 On the conditions required for explosion mitigation by water sprays. Process Saf. Environ. 78 (5), 339354.CrossRefGoogle Scholar
Thomine, O. 2011 Development of multi-scale methods for the numerical simulation of diphasic reactive flows. PhD thesis, University of Rouen, France.Google Scholar
Wagner, J., Beresh, S., Kearney, S., Trott, W., Castaneda, J., Pruett, B. & Baer, M. 2012 A multiphase shock tube for shock wave interactions with dense particle fields. Exp. Fluids 52 (6), 15071517.Google Scholar
White, F. M. 2011 Fluid Mechanics. McGraw Hill.Google Scholar
Wray, A. A. 1991 Minimal storage time-advancement schemes for spectral methods. Tech. Rep. MS202. NASA Ames Research Center.Google Scholar
Yeom, G.-S. & Chang, K.-S. 2012 Dissipation of shock wave in a gas-droplet mixture by droplet fragmentation. Intl J. Heat Mass Transfer 55 (4), 941957.CrossRefGoogle Scholar